Springer Nature
Browse
12989_2019_325_MOESM1_ESM.docx (1.49 MB)

MOESM1 of Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity

Download (1.49 MB)
journal contribution
posted on 2019-10-30, 18:14 authored by Laura Rubio, Georgios Pyrgiotakis, Juan Beltran-Huarac, Yipei Zhang, Joshi Gaurav, Glen Deloid, Anastasia Spyrogianni, Kristopher Sarosiek, Dhimiter Bello, Philip Demokritou
Additional file 1: Figure S1. TGA temperature-time profile (right ordinate, dashed line), corresponding sample mass (left ordinate) of as-produced (solid lines) and the mass loss normalized to the mass at the end of Step 1. Figure S2. XPS analysis. (a) Si-OH/O-Si-O ratio and total silanol content varying as a function of the combustion enthalpy. (b) Si-OH/O-Si-O ratio as a function of the total silanol. Figure S3. Determining the critical delivered sonication energy of SiO2 NPs. (a) Mean hydrodynamic diameter and (b) polydispersity index as a function of dispersion sonication energy of Wetchem SiO2 NPs, FSP made SiO2 NPs and commercial fumed SiO2 NPs in DI H2O. Figure S4. Fate and transport modeling results for SiO2 NPs. (a) Delivered-to-cell concentration normalized to the administered dose and (b) delivered-to-cell fraction deposited of wet chemistry made silica, FSP made SiO2 NPs and commercial fumed SiO2 NPs in RPMI + 10% (vol/vol) FBS. Solid lines are the fitting curves obtained using eq. 1 and 2. Figure S5. Importance of other modulators in silica NPs effect analyzing RAW264.7 cells. (a, b) short-lived ROS and H2O2 produced by the different SiO2 NPs at a fixed value of silanol content of 150 nmol. (c) Cytotoxicity of different SiO2 NPs at a fixed value of delivered silanol per cell area of 1 × 1014 #/cm2. (d) Viability of different SiO2 NPs at a fixed value of delivered silanol per cell area of 1.5 × 1014 #/cm2. Figure S6. Cytotoxicity (a) and Viability (PrestoBlue assay) (b) measured in SAEC cells. The data represented as function of total silanol delivered per cell area for the three delivered doses used. Data represent an average of three independent experiments performed in triplicate. Figure S7. ROS generation as a measure of oxidative damage (CellROX Green assay) in SAEC cells. After 24-h treatment, ROS generation was measured and data represented as function of total silanol delivered per cell area for the three delivered doses used. Data represent an average of three independent experiments performed in triplicate. Figure S8. Cytotoxicity measured in RAW264.7 cells. The data is represented as function of short life ROS-H2O2 eq. nmol. Data represent an average of three independent experiments performed in triplicate. Table S1. Mean values of the parameters obtained for suspension preparation and colloidal characterization of wet chemistry made silica, FSP made silicas and commercial fumed silica in H2O and RPMI + 10% (vol/vol) FBS. Table S2. The short-lived ROS and H2O2 generated from seven types of silica over the 10–100 μg/mL range. Values have been corrected for sonication and background oxidation of Trolox.

Funding

Foundation for the National Institutes of Health

History