
Zhu et al. Page S1 of S13

Supplementary Materials
Sample queries
To illustrate the use of STQL in performing practical analyses, here we describe a number of complete sample
queries, including both simple ones involving single statements and composite ones involving multiple statements.
Each of these queries can be tested by pasting the whole statement(s) into the query box on the main page of
START and submitting the query from there.

Simple queries
SQ1 Analysis task: To compute the average H3K4me1 signal at each 100bp bin across the whole genome, for

identifying potential transcriptional enhancers.
Query template:

SELECT *
FROM (project T on generate bins with length 100
with vd sum using EACH MODEL) NtInt
WHERE NtInt.value > 0;

Example of real data:
• T: ‘wgEncodeBroadHistone‘.

‘wgEncodeBroadHistoneGm12878H3k04me1StdSigV2.bigWig‘ (An ENCODE ChIP-seq data file of
H3K4me1 signals in the GM12878 cell line produced by the Broad Institute)

Explanations: This is a simple demonstration of the second form of the project on statement. In the
bigWig file we use, the intervals are all non-overlapping. In this case, using vd sum, vd avg, vd product,
vd max and vd min would all give the same results.

SQ2 Analysis task: To compute the expression level of each gene, defined as the average RNA (cDNA) sequencing
(RNA-seq) signals covering the genomic locations of the gene.
Query template:

SELECT *
FROM (project T1 on (

SELECT DISTINCT chr, chrstart, chrend
FROM T2

WHERE feature = ’gene’) NtInt1
with vd avg using EACH MODEL) NtInt2

WHERE NtInt2.value > 0;
Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data
file of total long RNA in the GM12878 cell line produced by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode [21] version 19 annotation file)
Explanations: In this query, a nested query is first used to select the sequence elements in the gene annotation
file that correspond to genes. “feature” is a non-default attribute defined for the gene annotation track.
A projection is then performed to compute the average RNA-seq signal of each gene, and the genes with
non-zero expression are returned.

SQ3 Analysis task: To find the genomic regions covered by signal peaks of both H3K4me1 and H3K27ac, which
are potential active enhancers in a particular context (the HCT116 human cell line in this case).
Query template:

SELECT *
FROM T1 intersectjoin T2;

Example of real data:
• T1: ‘wgEncodeSydhHistone‘.

‘wgEncodeSydhHistoneHct116H3k04me1UcdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of
H3K4me1 signal peaks in the HCT116 cell line produced by the Stanford/Yale/Davis/Harvard sub-
group)

• T2: ‘wgEncodeSydhHistone‘.
‘wgEncodeSydhHistoneHct116H3k27acUcdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of
H3K27ac signal peaks in the HCT116 cell line produced by the Stanford/Yale/Davis/Harvard sub-
group)



Zhu et al. Page S2 of S13

Explanations: This query demonstrates the use of the intersectjoin construct in finding common regions
in different signal tracks.

SQ4 Analysis task: To identify expressed regions outside annotated level-1 (experimentally validated) and level-2
(manually curated) Gencode protein-coding genes, some of which could be non-coding RNAs.
Query template:

SELECT *
FROM T1 exclusivejoin (

SELECT chr, chrstart, chrend
FROM T2

WHERE feature = ’gene’ AND
attributes LIKE ’%gene type “protein coding”%’
AND
(attributes LIKE ’%level 1%’ OR
attributes LIKE ’%level 2%’)

) NtInt;
Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data
file of total long RNA in the GM12878 cell line produced by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)
Explanations: This query demonstrates the use of the exclusivejoin construct in excluding regions. A
nested query is used to select out only level-1 and level-2 protein coding genes from an annotation file,
based on the non-default attribute “attributes” defined for the gene annotation track. These regions are
then excluded from the expressed regions with RNA-seq signals. One could also easily modify the query
to exclude also small flanking regions from each gene, by selecting for example “T2.chrstart-1000” and
“T2.chrend +1000” in the nested query, or by considering only regions with RNA-seq signals higher than
a certain threshold as expressed, by pre-filtering T1 using the WHERE clause.

SQ5 Analysis task: To identify contiguous genomic regions with significant expression, which could correspond
to transcribed exons.
Query template:

SELECT *
FROM coalesce (

SELECT chr, chrstart, chrend, value
FROM T
WHERE value > 2) NtInt
with vd avg using EACH MODEL;

Example of real data:
• T: ‘wgEncodeCshlLongRnaSeq‘.

‘wgEncodeCshlLongRnaSeqGm12878CellTotalPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data
file of total long RNA in the GM12878 cell line produced by the Cold Spring Harbor Laboratory)

Explanations: This query demonstrates the use of the coalesce construct in joining overlapping and
adjacent regions. A nested query is used to select genomic locations with an expression level larger than
2 (say in RPKM or other units). These regions are then joined together into larger contiguous regions by
using coalesce .

SQ6 Analysis task: To identify regions bound by a transcription factor that overlap binding sites of another
factor, which could indicate co-binding events and provide information for finding functionally related
factors.
Query template:

SELECT *
FROM T1 TInt1, T2 TInt2
WHERE TInt1 overlaps with TInt2;

Example of real data:
• T1: ‘wgEncodeSydhTfbs‘.

‘wgEncodeSydhTfbsHelas3CfosStdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of Cfos binding
signal peaks in the HeLa-S3 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)



Zhu et al. Page S3 of S13

• T2: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsHelas3CjunStdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of Cjun binding
signal peaks in the HeLa-S3 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

Explanations: This query demonstrates the use of the overlaps with relation in the WHERE clause. The
query returns Cfos binding peaks that overlap Cjun binding peaks. These two factors are both members of
the AP-1 complex and are expected to have overlapping binding peaks. This query is different from taking
an intersectjoin between the two tracks (which is another possible way to study co-binding events),
because intersectjoin only returns the overlapping parts of the intervals but not whole Cfos binding
peaks.

SQ7 Analysis task: To identify all annotated genes longer than a given length.
Query template:

SELECT *
FROM T TInt
WHERE feature = ’gene’ AND length(TInt) > 1000;

Example of real data:
• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)

Explanations: This query demonstrates the use of the length() function in the WHERE clause in filtering
intervals. By changing the conditions in the WHERE clause, this query could also be used for identifying
other types of sequence element.

SQ8 Analysis task: To count the number of annotated non-protein-coding genes, which is relatively more variable
than the number of protein-coding genes among different annotation sets and different versions of the same
annotation set.
Query template:

SELECT COUNT(*)
FROM T
WHERE feature = ’gene’ AND

attributes NOT LIKE ’%gene type “protein coding”%’;
Example of real data:

• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)
Explanations: This query demonstrates the use of the COUNT() function in the SELECT clause in
computing an aggregated value of the resulting intervals. The selection condition in the WHERE clause
also demonstrates how the NOT LIKE construct can be used to filter out protein coding genes from the
results.

Composite queries
CQ1 Analysis task: To count the number of transcription factors with a binding peak overlapping each genomic

location. Neighboring locations with the same count are grouped into one single interval in the results. This
query can be used as one step in identifying regions with high occupancy of transcription-related factors
(HOT) [8].
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT chr, chrstart, chrend, value
FROM T
COMBINED WITH UNION ALL AS Step1Results;

SELECT *
FROM discretize Step1Results with vd sum using EACH MODEL;

Example of real data:
• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor binding signals from ChIP-seq ex-

periments produced by the Stanford/ Yale/ Davis/ Harvard sub-group)
• <track-selection-conditions>: cell=’GM12878’ and fname LIKE ’%Pk%’ (considering only peak files

from the cell line GM12878)
Explanations: The first sub-query demonstrates the use of the FOR TRACK IN () construct in selecting
all files corresponding to transcription factor binding peaks in a particular cell line. The union of all these



Zhu et al. Page S4 of S13

peaks is stored in a temporary track called Step1Results. Each of these peaks has a value of 1. In the second
sub-query, the discretize operation is used to cut the overlapping peaks into non-overlapping regions. The
number of different transcription factors with a binding peak overlapping each resulting region is counted
by using the vd sum operation with the EACH MODEL of interval values. The final results are stored
in a signal track called Step2Results using the second form of CREATE TRACK.

CQ2 Analysis task: To identify regions that 1) have active transcription factor binding, 2) are not within pre-
defined promoter-proximal regulatory modules and 3) are at least 10kb away from high-confidence annotated
genes. These regions are potentially gene-distal regulatory regions.
Query template:

CREATE TRACK Step1Results AS
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (T1 exclusivejoin T2) NtIntA;

CREATE TRACK Step2Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend
FROM Step1Results NtIntB, T3 TInt3
WHERE TInt3.feature = ’gene’ AND

(TInt3.attributes LIKE ’%level 1%’ OR
TInt3.attributes LIKE ’%level 2%’) AND
distance(NtIntB, TInt3) < 10000;

SELECT *
FROM Step1Results exclusivejoin Step2Results;

Example of real data:
• T1: ‘HumanMetaTracks‘.‘BAR Gm12878 merged.bed‘ (Regions with active transcription factor bind-

ing in GM12878 as defined in Yip et al. (2012) [8])
• T2: ‘HumanMetaTracks‘.‘PRM Gm12878 merged.bed‘ (Promoter-proximal regulatory regions in

GM12878 as defined in Yip et al. (2012) [8])
• T3: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)

Explanations: The first sub-query uses exclusivejoin to select regions with active transcription factor
binding but are not within the pre-defined promoter-proximal regulatory regions. The second sub-query
takes these regions and identifies those that are within 10,000bp from any level-1 or level-2 annotated genes
in Gencode. The third sub-query removes the gene-proximal regions obtained in sub-query 2 from the
regions obtained in sub-query 1 to get the final results. We designed three sub-queries for this task, rather
than one single complex query (which is possible), to keep each sub-query short and easily understandable.

CQ3 Analysis task: To identify transcription factor binding regions, in the form of 100bp bins, that are at
least 10kb from any high-confidence annotated genes. This is another way to identify potential gene-distal
regulatory regions when the binding-active regions and the promoter-proximal regulatory modules are not
pre-defined and it is desirable to give 100bp bins as outputs for further analyses.
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT chr, chrstart, chrend, value
FROM T
COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (project Step1Results on

generate bins with length 100
with vd sum using EACH MODEL) NtIntA
WHERE NtIntA.value > 0;

CREATE TRACK Step3Results AS



Zhu et al. Page S5 of S13

SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend
FROM T1 TInt1, Step2Results NtIntB
WHERE TInt1.feature = ’gene’ AND

(TInt1.attributes LIKE ’%level 1%’ OR
TInt1.attributes LIKE ’%level 2%’) AND
distance(NtIntB, TInt1) < 10000;

SELECT *
FROM coalesce (

SELECT NtIntC.chr, NtIntC.chrstart, NtIntC.chrend
FROM (Step2Results exclusivejoin Step3Results) NtIntC
) NtIntD;

Example of real data:
• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor binding signals from ChIP-seq ex-

periments produced by the Stanford/ Yale/ Davis/ Harvard sub-group)
• <track-selection-condition>: cell=’GM12878’ and fname LIKE ’%Pk%’ (considering only peak files

from the cell line GM12878)
• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)

Explanations: The first sub-query stores all transcription factor binding peaks in a temporary track. The
second sub-query maps these regions to 100bp bins, and counts the number of transcription factors with
a peak overlapping each bin. By using the “.value > 0” condition, only bins with at least one binding
transcription factor are kept. The third sub-query identifies the bins that are close to level-1 or level-2
Gencode genes. Finally, the fourth sub-query uses exclusivejoin to find bins far away from these genes,
and join those that are adjacent into larger regions.

CQ4 Analysis task: To identify genomic regions, in the form of 2000bp bins, that overlap the binding peaks of at
least 2 transcription factors. The average H3K27ac signal at each of the identified regions is then computed.
Thresholding the resulting signals gives a list of regions with exceptionally strong H3K27ac signals, which
could be potential super enhancers.
Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)
SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend, NtIntA.value
FROM (project T on

generate bins with length 2000
with vd sum using EACH MODEL) NtIntA
WHERE NtIntA.value > 0
COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS
SELECT chr, chrstart, chrend, COUNT(*) AS value
FROM Step1Results
GROUP BY chr, chrstart, chrend;

CREATE TRACK Step3Results AS
SELECT chr, chrstart, chrend
FROM Step2Results
WHERE value > 2;

CREATE TRACK Step4Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend, NtIntB.value
FROM (project T on Step3Results
with vd sum using EACH MODEL) NtIntB;

SELECT *
FROM Step4Results
WHERE value > 3;



Zhu et al. Page S6 of S13

Example of real data:
• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor binding signals from ChIP-seq ex-

periments produced by the Stanford /Yale /Davis /Harvard sub-group)
• <track-selection-conditions>: cell=’K562’ and fname LIKE ’%Pk%’ (considering only peak files from

the cell line K562)
• T: ‘wgEncodeBroadHistone‘.

‘wgEncodeBroadHistoneK562H3k27acStdSig.bigWig‘ (An ENCODE ChIP-seq data file of H3K27ac
signals in the K562 cell line produced by the Broad Institute)

Explanations: In the first sub-query, all peak files of transcription factor binding from a particular cell line
are selected. Each of them is projected onto 2000bp bins, so that a bin has value 1 if it overlaps with a
binding peak, or value 0 if it does not. Only bins that overlap with at least one binding peak are kept. In the
second sub-query, the number of transcription factors with a binding peak overlapping a bin is counted by
using the COUNT() function and the GROUP BY clause. In the third sub-query, only bins that overlap
with at least the binding peaks of a certain number of (e.g., 2) different transcription factors are kept. In the
fourth sub-query, H3K27ac signals are mapped onto these remaining bins. Finally, in the fifth sub-query,
only bins with an H3K27ac level larger than a threshold (e.g., 3) are kept in the output. Again, it is possible
to write the STQL statements in a more compact form, but separating them into sub-queries makes each
one easy to write and to understand.

CQ5 Analysis task: To identify genes with significant differential binding signals at their promoters in two
different contexts. In each context, the binding signals are computed by subtracting the ChIP-seq signals
by the corresponding background signals obtained from a control experiment.
Query template:
CREATE TRACK Step1Results AS
SELECT chr, chrstart, chrend, strand
FROM T1

WHERE feature = ’gene’ AND
attributes LIKE ’%gene type “protein coding”%’;

CREATE TRACK Step2Results AS
SELECT DISTINCT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend
FROM (SELECT chr, chrstart-1500 AS chrstart,

chrstart +500 AS chrend
FROM Step1Results
WHERE strand = ’+’
UNION ALL
SELECT chr, chrend-500 AS chrstart,

chrend +1500 AS chrend
FROM Step1Results
WHERE strand = ’-’) NtIntA;

CREATE TRACK Step3Results AS
SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend,

NtIntB.value - NtIntC.value as value
FROM (project T2 on Step2Results
with vd sum using EACH MODEL) NtIntB,

(project T3 on Step2Results
with vd sum using EACH MODEL) NtIntC
WHERE NtIntB coincides with NtIntC;

CREATE TRACK Step4Results AS
SELECT NtIntD.chr, NtIntD.chrstart, NtIntD.chrend,

NtIntD.value - NtIntE.value as value
FROM (project T4 on Step2Results
with vd sum using EACH MODEL) NtIntD,



Zhu et al. Page S7 of S13

(project T5 on Step2Results
with vd sum using EACH MODEL) NtIntE
WHERE NtIntD coincides with NtIntE;

CREATE TRACK Step5Results AS
SELECT NtIntF.chr, NtIntF.chrstart, NtIntF.chrend,

NtIntF.value/ NtIntG.value as value
FROM Step3Results NtIntF,

(SELECT chr, chrstart, chrend, value
FROM Step4Results
WHERE value != 0) NtIntG

WHERE NtIntF coincides with NtIntG;

CREATE TRACK Step6Results AS
SELECT chr, chrstart, chrend
FROM Step5Results
WHERE value > 2;

SELECT *
FROM (SELECT NtIntH.chr, NtIntH.chrstart, NtIntH.chrend,

NtIntH.strand
FROM Step1Results NtIntH,

(SELECT chr, chrstart +1500 AS chrstart,
chrstart +1500 AS chrend

FROM Step6Results) NtIntI
WHERE NtIntH.strand = ’+’ AND

NtIntI is prefix of NtIntH
UNION ALL
(SELECT NtIntJ.chr, NtIntJ.chrstart, NtIntJ.chrend,

NtIntJ.strand
FROM Step1Results NtIntJ,

(SELECT chr, chrend-1500 AS chrstart,
chrend-1500 AS chrend
FROM Step6Results) NtIntK

WHERE NtIntJ.strand = ’-’ AND
NtIntK is suffix of NtIntJ) NtIntL;

Example of real data:
• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version 19 annotation file)
• T2: ‘wgEncodeSydhTfbs‘.

‘wgEncodeSydhTfbsGm12878JundIggrabSig.bigWig‘ (An ENCODE ChIP-seq data file of Cjun bind-
ing signals in the GM12878 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T3: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsGm12878InputStdSig.bigWig‘ (An ENCODE control experiment file using input
DNA in the GM12878 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T4: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsK562JundIggrabSig.bigWig‘ (An ENCODE ChIP-seq data file of Cjun binding
signals in the K562 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T5: ‘wgEncodeSydhTfbs‘.
‘wgEncodeSydhTfbsK562InputStdSig.bigWig‘ (An ENCODE control experiment file using input DNA
in the K562 cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

Explanations: The first sub-query identifies all protein-coding genes. The second sub-query defines the pro-
moter of each gene as the region from 1500bp upstream of the transcription start site to 500bp downstream
of it. The two strands need to be handled in different ways. The third and fourth sub-queries compute the
background-subtracted binding signals of a transcription factor at the promoters in two different cell lines.



Zhu et al. Page S8 of S13

The fifth sub-query computes the fold change of the binding signal, given that the signal is non-zero in the
second cell line. The sixth sub-query selects the promoters with at least a 2-fold higher binding signal in
the first cell line as compared to the second one. Finally, the seventh sub-query gets back the information
of the genes of these promoters.
Since the results of the first two sub-queries are frequently used, they can be pre-constructed for reuse
by various queries, which would simplify the whole analysis procedure. START allows users to store their
custom tracks, which will be explained in the next section.

CQ6 Analysis task: To identify genomic regions with bi-directional transcription at their flanking regions (Fig-
ure S1), which could be potential enhancers producing enhancer RNAs (eRNAs) [29, 30].

Figure S1 Illustration of the regions to be identified in this query. RNA-seq signals on the two strands are shown in the two tracks.
In the middle we show three genomic regions in the form of vertical bars. The first and second regions do not satisfy the query
requirements since they miss significant RNA-seq signals on either side, while the third region satisfies them by having significant
signals on both sides. This query identifies all regions that satisfy the requirements in the whole genome.

Query template:
CREATE TRACK Step1Results AS
SELECT chr, chrstart - 200 AS chrstart, chrend - 200 AS chrend
FROM T1

WHERE value > 2;

CREATE TRACK Step2Results AS
SELECT chr, chrstart + 200 AS chrstart, chrend + 200 AS chrend
FROM T2

WHERE value > 2;

SELECT *
FROM Step1Results intersectjoin Step2Results;

Example of real data:
• T1: ‘wgEncodeCshlLongRnaSeq‘.

‘wgEncodeCshlLongRnaSeqK562CellPapPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data file
of total long RNA of the positive strand in the K562 cell line produced by the Cold Spring Harbor
Laboratory)

• T2: ‘wgEncodeCshlLongRnaSeq‘.
‘wgEncodeCshlLongRnaSeqK562CellPapMinusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data file
of total long RNA of the negative strand in the K562 cell line produced by the Cold Spring Harbor
Laboratory)

Explanations: In the first sub-query, genomic regions on the positive strand with an expression level higher
than a given value (e.g., 2) are selected. The regions are shifted 200bp to the left, which will make the



Zhu et al. Page S9 of S13

last step easy. Likewise, the second sub-query identifies regions on the negative strand with significant
expression, and the regions are shifted to the right by 200bp. Finally, in the third sub-query, the results
from the first two sub-queries are intersected. For each region in the final signal track, every constituent
genomic position has significant expression level 200bp downstream on the positive strand and 200bp
upstream on the negative strand, which forms a bi-directional pattern indicative of eRNA [29].



Zhu et al. Page S10 of S13

Comparisons between STQL and SQL

Since STQL has an SQL-like syntax and a data model that is essentially a relation, one may wonder whether
STQL queries can be easily expressed in SQL. In this section, we use four examples to show that some operations
are much more difficult to perform using SQL than STQL.

Ex.1 The first example involves the is closest to each construct. In STQL, it is easy to find out the interval(s)
in track T2 closest to each interval in track T1 using the following query:

SELECT T1.chr, T1.chrstart AS start1, T1.chrend AS end1, T2.chrstart AS start2, T2.chrend AS end2
FROM T1 TInt1, T2 TInt2
WHERE TInt1 is closest to each TInt2;
To perform the same operation in SQL, three steps are needed, namely 1) computing the distance of all
interval pairs from the two tracks, 2) finding the minimum distance for each interval in T1, and 3) retrieving
the corresponding pairs with these minimum distances:

WITH
/* 1. Calculate the distance between all pairs of intervals from T1 and T2 */
T1sDistance AS (
SELECT T1.chr, T1.chrstart AS start1, T1.chrend AS end1, T2.chrstart AS start2, T2.chrend AS end2,

CASE /* Different cases for calculating distance between two intervals */
WHEN T1.chrstart <= T2.chrend AND T1.chrend >= T2.chrstart

THEN 0
WHEN T1.chrend < T2.chrstart

THEN T2.chrstart - T1.chrend
WHEN T1.chrstart > T2.chrend

THEN T1.chrstart - T2.chrend
END AS distance

FROM T1, T2

WHERE T1.chr = T2.chr
),

/* 2. Calculate the minimum interval distance of each interval in T1 */
T1sMinDistance AS (

SELECT chr, start1, end1, min(distance) AS minDistance
FROM T1sDistance
GROUP BY chr, start1, end1

)

/* 3. Find out the closest pairs based on the minimum distances */
SELECT *
FROM T1sDistance a

LEFT JOIN T1sMinDistance b
ON a.chr = b.chr
AND a.start1 = b.start1
AND a.end1 = b.end1

WHERE distance = minDistance

Ex.2 The second example involves the coalesce construct. Sample query SQ5 demonstrates how all the genomic
positions with certain level of transcription signals are merged into disjoint regions using coalesce . Since
each interval needs to be combined with an indefinite number of other intervals to form an output region, the
operation cannot be performed using standard SQL. We wrote the following SQL query involving recursion
to handle this task:



Zhu et al. Page S11 of S13

WITH RECURSIVE /* Recursively coalesce the intervals */
CoalesceGroup AS (
SELECT chr, chrstart, chrend
FROM T
WHERE T.value > 2
UNION
SELECT a.chr, a.chrstart, T.chrend
FROM CoalesceGroup AS a
/* Join overlapping intervals */
JOIN c on a.chr = c.chr

AND a.chrstart <= c.chrend + 1 AND a.chrend >= c.chrstart - 1
WHERE c.value > 2
),
CoalesceGroup2 AS (
SELECT *, row number() OVER (PARTITION BY chr, chrend ORDER BY chrstart) AS rn
FROM CoalesceGroup
)

/* Compute the values of the output intervals */
SELECT a.chr, a.chrstart, a.chrend, AVG(c.value) as value
FROM (

SELECT chr, chrstart, MAX(chrend) AS chrend
FROM CoalesceGroup2
WHERE rn = 1
GROUP BY chr, chrstart) a
LEFT JOIN c ON a.chrstart <= c.chrend AND a.chrend >= c.chrstart

WHERE c.value > 2
GROUP BY a.chr, a.chrstart, a.chrend

Ex.3 The third example involves the discretize construct. STQL can be used to discretize the intervals in a

track into non-overlapping intervals:
SELECT *
FROM discretize T with vd sum using EACH MODEL

The same operation can be performed by the following SQL query:

/* Determine the non-overlapping intervals */
WITH allPos AS (
SELECT row number() OVER (PARTITION BY chr ORDER BY pos) AS rn, chr, pos
FROM ((

SELECT chr, d.chrstart AS pos FROM d GROUP BY chr, pos
UNION
SELECT chr, d.chrend+1 AS pos FROM d
WHERE d.chrend != (SELECT MAX(d.chrend) FROM d) GROUP BY chr, pos

)
UNION ALL
(

SELECT chr, d.chrstart-1 AS pos FROM d
WHERE d.chrstart != (SELECT MIN(d.chrstart) FROM d) GROUP BY chr, pos
UNION
SELECT chr, d.chrend AS pos FROM d GROUP BY chr, pos

)) tmpUnion
),



Zhu et al. Page S12 of S13

grouping AS (
SELECT a.chr, a.pos AS chrstart, b.pos AS chrend
FROM allPos a LEFT JOIN allPos b ON a.rn+1 = b.rn AND a.chr = b.chr
WHERE a.rn % 2 = 1)

/* Compute the values of the output intervals */
SELECT a.chr, a.chrstart, a.chrend, SUM(d.value) AS value
FROM grouping a JOIN d ON a.chr = d.chr AND a.chrstart <= d.chrend AND a.chrend >= d.chrstart
GROUP BY a.chr, a.chrstart, a.chrend

Ex.4 The last example invovles the project on generate bins with length constructs. Sample query SQ1

demonstrates how the average signal within each 100bp genomic bin can be easily computed using these

constructs. To perform the same operation in SQL, it has to first define a new table consisting of the bin

definitions, and then compute the average signal value in each bin:

/* 1. Create the bin definitions using the GENERATE SERIES function in PostgreSQL */
WITH
Bin AS (
SELECT’chr1’ AS chr, c.b+1 AS chrstart, c.b+100 AS chrend FROM GENERATE SERIES(0, 249250621, 100) c(b)
UNION ALL
SELECT’chr2’ AS chr, c.b+1 AS chrstart, c.b+100 AS chrend FROM GENERATE SERIES(0, 243199373, 100) c(b)
UNION ALL
SELECT’chr3’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 198022430, 100) c(b)
UNION ALL
SELECT’chr4’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 191154276, 100) c(b)
UNION ALL
SELECT’chr5’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 180915260, 100) c(b)
UNION ALL
SELECT’chr6’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 171115067, 100) c(b)
UNION ALL
SELECT’chr7’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 159138663, 100) c(b)
UNION ALL
SELECT’chr8’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 146364022, 100) c(b)
UNION ALL
SELECT’chr9’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 141213431, 100) c(b)
UNION ALL
SELECT’chr10’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 135534747, 100) c(b)
UNION ALL
SELECT’chr11’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 135006516, 100) c(b)
UNION ALL
SELECT’chr12’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 133851895, 100) c(b)
UNION ALL
SELECT’chr13’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 115169878, 100) c(b)
UNION ALL
SELECT’chr14’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 107349540, 100) c(b)
UNION ALL
SELECT’chr15’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 102531392, 100) c(b)
UNION ALL



Zhu et al. Page S13 of S13

SELECT’chr16’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 90354753, 100) c(b)
UNION ALL
SELECT’chr17’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 81195210, 100) c(b)
UNION ALL
SELECT’chr18’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 78077248, 100) c(b)
UNION ALL
SELECT’chr19’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 59128983, 100) c(b)
UNION ALL
SELECT’chr20’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 63025520, 100) c(b)
UNION ALL
SELECT’chr21’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 48129895, 100) c(b)
UNION ALL
SELECT’chr22’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 51304566, 100) c(b)
UNION ALL
SELECT’chrX’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 155270560, 100) c(b)
UNION ALL
SELECT’chrY’ AS chr, c.b+1 AS chrstart, c.b + 100 AS chrend FROM GENERATE SERIES(0, 59373566, 100) c(b)
)

/* 2. Compute average signal value of each bin */
SELECT *
FROM (

SELECT Bin.chr, Bin.chrstart, Bin.chrend,
SUM(CASE /* Different cases based on the intersection between an interval an a bin */
WHEN Bin.chrstart > T.chrstart AND Bin.chrend > T.chrend

THEN T.chrend - Bin.chrstart + 1
WHEN Bin.chrstart <= T.chrstart AND Bin.chrend > T.chrend

THEN T.chrend - T.chrstart + 1
WHEN Bin.chrstart > T.chrstart AND Bin.chrend <= T.chrend

THEN Bin.chrend - Bin.chrstart + 1
WHEN Bin.chrstart <= T.chrstart AND Bin.chrend <= T.chrend

THEN Bin.chrend - T.chrstart + 1
END * T.value)/(Bin.chrend - Bin.chrstart + 1) AS value

FROM Bin LEFT JOIN T on /* Join all overlapping intervals and bins */
(Bin.chrstart <= T.chrend and Bin.chrend >= T.chrstart AND Bin.chr = T.chr)

GROUP BY Bin.chr, Bin.chrstart, Bin.chrend ) AS Ntint
WHERE Ntint.value > 0




