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Abstract6

In the manuscript, we proposed the estimation of the regional mean one-dimensional (1D) conductivity7

profile with the average ssq impedance instead of using the traditional Berdichevsky average and8

detecting the galvanic distortion in MT data with the det and ssq impedances. The theoretical9

formulation of the proposed methods is based on the Groom–Bailey model of galvanic distortion.10

Therefore, the galvanic distortion model dependence of the proposed methods is questionable. The first11

section of this supplementary material compares the geometric average, which is a basis of the proposed12

methods, to the arithmetic average. The geometric and arithmetic averages of the det and ssq13

impedances from the synthetically distorted data are calculated. For different distortion models, the14

geometric average of ssq impedances is shown to be the most reliable in estimating the regional mean15

1D conductivity profile. The second section of this supplement shows the numerical results supporting16

the approximation applied in averaging the distorted ssq impedances. The third section shows the17

examples of all four elements of the impedance tensors, undistorted and distorted, from all stations in18

our three-dimensional (3D) example. The last section provides the theoretical derivation and numerical19

examination of the proposed methods using the other model of galvanic distortion. Therefore, the20

perturbation of the identity matrix, which is referred to as the PIM model. The numerical results shown21

that the models of galvanic distortion insignificantly affect the conclusion in the manuscript, i.e., the22

average ssq impedance is the appropriate choice for estimating a regional mean 1D conductivity profile.23
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1. Geometric and arithmetic means of distorted impedances26

Both geometric and arithmetic averages are used for measuring the central tendency of random27

variables. Mathematically, the arithmetic mean is greater than or equal to the geometric mean for28

non-negative numbers. The geometric mean is known to be less sensitive to the outliers compared to29

the arithmetic mean (Dawson and Trapp 2004). As a consequence, the arithmetic mean may not be30

appropriate in case of random variables with skewed distribution. The magnitude of MT data, the31

apparent resistivity, is shown in a logarithmic scale. The regional mean impedance was originally32

calculated using the geometric average (Berdichevsky et al. 1980), upon which the proposed method33

is based (Rung-Arunwan et al. 2016). However, either the geometric mean (e.g., Berdichevsky et al.34

1980; Avdeeva et al. 2015) or the arithmetic mean (e.g., Baba et al. 2010) has been used to determine35

the regional mean rotationally-invariant impedances. The dependence of the regional mean rotationally-36

invariant impedances on averaging approaches has never been investigated. In the following, we examined37

the geometric and arithmetic means for the synthetically distorted data from both the parametric and38

numerical models.39

The arithmetic means of the det and ssq impedances in one-dimensional (1D) Earth, Z̄ ′det,A(ω) and

Z̄ ′ssq,A(ω), are written as follows:

Z̄ ′det,A(ω) =
1

N

N∑
i=1

Z ′det(ri;ω) (S1)

and

Z̄ ′ssq,A(ω) =
1

N

N∑
i=1

Z ′ssq(ri;ω), (S2)

where the definitions of variables are given in the main text.40

The examples of the geometric and arithmetic average of the det and ssq impedances distorted41

under the Groom–Bailey and PIM models (see Section 4 of this supplementary material) are shown in42

Figures S1a and S2a. The arithmetic averages of both det and ssq impedances are greater than the43

geometric averages of those for both galvanic distortion models, which is consistent with the theoretical44

prediction. Consequently, the average det impedance gives the regional mean 1D impedance comparable45

to the average ssq impedance and also to the undistorted impedance.46

The 1D models inverted from these average responses are inverted with the same condition as in the

main text (They are shown in Figures S1b, and S2b). For the parametric models of galvanic distortion,

the arithmetic-average det impedance and the geometric-average ssq impedance give the 1D models that
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Galvanic distortion model
Geometric average Arithmetic average

ssq det ssq det

Groom–Bailey model (SD=0.3) 0.0027 0.1954 0.3453 0.0530

PIM model (SD=0.5) 0.0874 0.2411 0.1985 0.1045

Table S1. : Model recovery misfits (Eq. S3) calculated from the 1D models estimated from the distorted

data relative to the 1D model estimated from the undistorted data (Figures S1b, and S2b) within the

depth range of 14.8–33.3 km.

are consistent with the 1D model inverted from the undistorted data. However, to quantitatively validate

such averages, we used the model recovery misfit (after Zhang et al. 2012), which is the RMS misfit of

the conductivity model parameters estimated from distorted data with respect to those from undistorted

data:

rms(σ) =

√∑L
i=1(log σd,i − log σu,i)2

L
, (S3)

where log σd,i and log σu,i are estimated conductivity at the ith layer from the distorted and undistorted47

data, respectively, and L is the number of selected layers. Here, only the model parameters within the48

depth range of 14.8–33.3 km, which corresponds to the periods of present interest, are used in calculation.49

The model recovery misfits of the synthetically distorted data are given in Table S1. The models from50

the geometric-average ssq impedances give the least model recovery misfits, while the model recovery51

misfit from the geometric-average ssq impedance and that from the arithmetic-average det impedance52

are equivalent. Although, the arithmetic-average det impeance and the geometric-average ssq impedance53

may be comparable in some cases, the quantitative validation supports the use of the geometric average54

which is a basis of the proposed methods.55
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2. The contribution of the structural dimensionality to the distorted ssq impedance56

An expression of the ssq rotational invariant of the distorted impedance observed at the ith station as

shown in Rung-Arunwan et al. (2016) in terms of the regional (undistorted) impedance and the distortion

parameters is written as

ssq(Z′(ri;ω)) = Z ′xx(ri;ω)2 + Z ′xy(ri;ω)2 + Z ′yx(ri;ω)2 + Z ′yy(ri;ω)2

= g2i ssq(ZR(ri;ω))

− 2g2i si
(1 + s2i )

[
ZR
xx(ri;ω)2 + ZR

xy(ri;ω)2 − ZR
yx(ri;ω)2 − ZR

yy(ri;ω)2
]

+
4g2i ei(1− s2i )

(1 + e2i )(1 + s2i )

[
ZR
xx(ri;ω)ZR

yx(ri;ω) + ZR
yx(ri;ω)ZR

yy(ri;ω)
]
,

(S4)

where the ri is the position vector of the ith station, the ω is the angular frequency, and the superscript57

(and subscript) R represents the regional or undistorted impedance. The first term is the ssq rotational58

invariant of the regional (scaled) impedance tensor. The second and third terms will, respectively, be59

finite if the underlying structure is two-dimensional (2D) or three-dimensional (3D) and the geometric60

distortion (splitting and shear) exists. Without geometric distortion, the second and third terms vanish61

regardless of structure dimensionality.62

Rung-Arunwan et al. (2016) mentioned that the contributions from the second and third terms

may be small compared to that from the first term, and the contributions from the second and third

terms are minor after averaging over many MT stations (see Eq. 7). To clarify the claims, we define the

contributions from the second and third terms to the distorted ssq rotational invariant (Eq. S4) as the

ratios R2 and R3:

R2(ri;ω) =

∣∣∣∣∣∣
− 2g2

i si
(1+s2i )

[
ZR
xx(ri;ω)2 + ZR

xy(ri;ω)2 − ZR
yx(ri;ω)2 − ZR

yy(ri;ω)2
]

ssq(Z′(ri;ω))

∣∣∣∣∣∣ , (S5)

and

R3(ri;ω) =

∣∣∣∣∣∣
4g2

i ei(1−s2i )
(1+e2i )(1+s2i )

[
ZR
xx(ri;ω)ZR

yx(ri;ω) + ZR
yx(ri;ω)ZR

yy(ri;ω)
]

ssq(Z′(ri;ω))

∣∣∣∣∣∣ . (S6)

The example of the ratios R2 and R3 from the checkerboard model (Figure 8 in the main text) at the63

period of 316.2 s, where the distortion parameter with SD of 0.3 is applied, are shown in Figure S3. The64

variation in the magnitude of the ssq rotational invariant due to the underlying structure is significantly65

less than the fluctuation due to the galvanic distortion. This can be seen from the plot of the undistorted66

ssq rotational invariant (Figure S3a) compared to that of the distorted ssq rotational invariant (Figure67

S3b). The plots of the ratios R2 and R3 (Figures S3c and S3d) show that the contributions from the68
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second and third terms of Eq. S4 to the distorted ssq rotational invariants are minor (approximately69

less than 5%). This implies that the contribution from the first term of Eq. S4, i.e., the ssq rotational70

invariant of the regional (or undistorted) impedance with site gain, dominates those from the second and71

third terms and it is the major part of the distorted ssq rotational invariant.72

To represent the case of the more 2D-like structure, the checkerboard is elongated in y direction73

(Figure S4). Note that the induction number of the elongated checkerboard is slightly larger than the74

square one. Here, only the example of ssq impedance is shown to avoid redundancy because the bias in75

the det impedances from the elongated checkerboard is similar to those from the square case. The MT76

responses from this setup are calculated and distorted with different SD of distortion parameters under77

the Groom–Bailey model, and the ssq impedances are calculated and then averaged (Figure S5a) using78

Eq. (7). The average impedances are inverted (Figure S5b) in the same manner as in the main text.79

As with the square checkerboard case, the variation in the magnitude of the ssq rotational invariant80

due to the galvanic distortion is stronger than that from the underlying structure (Figures S6a and S6b).81

The ssq rotational invariant of the distorted impedance and the ratios R2 and R3 (Eqs. S5 and S6) from82

the elongated checkerboard model at the period of 316.2 s, where the distortion parameter with SD of 0.383

is applied, is shown in Figure S6. When the underlying structure is more 2D like, the contribution from84

the second term (Figure S6c) becomes stronger (compared to the square checkerboard model). However,85

the contributions from the second and third terms to the distorted ssq rotational invariants are still minor86

(Figures S6c and S6d). Only a few stations show 10–15% contribution to the distorted ssq rotational87

invariants.88

To demonstrate that the contribution from the second and third terms are negligible in averaging

the ssq impedances from a cluster of N MT stations, we define the ratio R̄1:

R̄1(ω) =

∣∣∣∣∣
N∏
i=1

ssq(Z′(ri;ω))

g2i ssq(ZR(ri;ω))

∣∣∣∣∣
1/N

. (S7)

This frequency-dependent ratio represents the contribution from the first term in the average ssq89

impedance. If the average ssq impedance is mostly contributed by the first term, the ratio R̄1 will90

approach unity. To demonstrate that using the larger number of MT observation will lead to the more91

reliable average impedance, we vary the number of MT stations and the array configuration as shown in92

Figure S7.93

The ratio R̄1 calculated from the checkerboard model (Figure S8) is approximately unity. This94
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indicates that the average of the distorted ssq rotational invariant is merely equal to the average ssq95

rotational invariants of the regional impedance including the site gain and the contributions from the96

second and third terms should be negligible. Moreover, estimating the regional mean 1D conductivity97

profile would be more reliable as seen from the smaller standard error, if more of MT observations are98

made in the same size of the interesting area.99

Therefore the claims that the contributions from the second and third terms are small and negligible100

after averaging over a number of MT observation are acceptable at least for the example shown in this101

paper.102

7



3. MT impedances from 3D example103

In this section, four components of MT impedances from the cluster in a 3D example (Figure 8) in104

the main text are presented. The diagonal components, xx and yy, are shown to be minor compared to the105

off-diagonal components, xy and yx (Figure S9), if no galvanic distortion is applied. Their magnitudes are106

a few decades smaller than those of the off-diagonal components. However, when the galvanic distortion107

is contained, the diagonal components become significant, particularly due to the geometric distortion108

(see Groom and Bailey 1989). Here, an example of 3D responses distorted with the distortion parameter109

with SD of 0.3 is chosen (Figure S10). The magnitudes of off-diagonal and diagonal components become110

comparable and the phase mixing is also observed.111
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4. Examining the PIM model of galvanic distortion112

In MT, the distorted impedance tensor Z′ is mathematically expressed as the product of the

distortion operator C and the regional (or undistorted) impedance tensor ZR:

Z′ = CZR, (S8)

where the distortion operator C is the 2 × 2 rank-2 tensor of real-valued numbers so four degrees of

freedom are required (Smith 1995). This paper and also Rung-Arunwan et al. (2016) have adopted the

Groom–Bailey model of galvanic distortion (Groom and Bailey 1989) to model the distortion operator.

In this paper, we made synthetic tests by examining the behaviours of ‘randomized distortion operators’,

which were generated by giving Gaussian random numbers to the controlling parameters of the Groom–

Bailey model. Therefore, the site gain parameter follows the log-normal distribution with the mean of

unity, which is consistent with the Berdichevsky’s concept. However, the Groom–Bailey model is not the

only way to parameterize the distortion operator. A number of models have been proposed, for example,

by Bahr (1988), Chave and Smith (1994) and Smith (1995). In general, we may write the distortion

operator C as a product of the site gain g and the tensor of geometric distortion C̃:

C = gC̃. (S9)

Here C̃ is normalized so that its Frobenius norm is unity. For example, the geometric distortion tensors

in the Groom–Bailey model—twist T, shear S, splitting A operators—are normalized by their Frobenius

norms. Another model of galvanic distortion, the perturbed identity matrix (PIM) model, which is mostly

adopted recently (e.g., Tietze et al. 2015) takes a form of perturbation of the identity matrix:

C = I + DCxx Cxy

Cyx Cyy

 =

1 0

0 1

+

Dxx Dxy

Dyx Dyy

 , (S10)

where I is the identity matrix, and D is the perturbation matrix, elements of which—Dxx, Dxy, Dyx,

Dyy—describe the distortion. It is possible to synthesize a ‘randomized distortion’ by giving random

number to Dxx, Dxy, Dyx, and Dyy. In analogy to Eq. (S9), the normalized geometric distortion tensor

can be written as

C̃ =
C

‖C‖/
√

2
, (S11)

where the ‖C‖ =
√
C2

xx + C2
xy + C2

yx + C2
yy is the Frobenius norm of C. Note that when the tensors are

real-valued, the Frobenius norm squared and the ssq of those tensors are equivalent. In the PIM model,
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the site gain (g in Eq. S9) can thus be defined from the Frobenius norm (Bibby et al. 2005):

gfrb =
‖C‖√

2
, (S12)

which is hereafter named the Frobenius gain. Note that the site gain is not treated as an independent113

parameter in this galvanic distortion model. If the (Cxx, Cxy, Cyx, Cyy) cohorts follow the normal114

distribution, the ‖C‖2 is a random variable following the χ2 distribution of the fourth order. Therefore,115

the distribution of the Frobenius gain for the PIM model is expected to be non-Gaussian. The mean116

value is expected to be greater than unity.117

Under the PIM model of galvanic distortion, the det and ssq impedances from the distorted 1D

impedance tensor at the ith station can be, respectively, expressed as:

Z ′det(ri;ω) =
√

det(Ci)Z1D(ω) =
√
Cxx,iCyy,i − Cxy,iCyx,i Z1D(ω), (S13)

and

Z ′ssq(ri;ω) =
‖Ci‖√

2
Z1D(ω) =

√
(C2

xx,i + C2
xy,i + C2

yx,i + C2
yy,i)/2Z1D(ω). (S14)

Note that the coefficient of the distorted det impedance is generally smaller than that of the distorted

ssq impedance because:

Cxx,iCyy,i − Cxy,iCyx,i ≤ (C2
xx,i + C2

xy,i + C2
yx,i + C2

yy,i)/2 (S15)

Consequently, the det impedance is expected to give the smaller impedance magnitude.118

From an array of N MT stations, the average det and ssq impedances are written as:

Z̄ ′det(ω) =

[
N∏
i=1

√
det(Ci)

] 1
N

Z1D(ω) =

[
N∏
i=1

Cxx,iCyy,i − Cxy,iCyx,i

] 1
2N

Z1D(ω), (S16)

Z̄ ′ssq(ω) =

[
N∏
i=1

‖Ci‖√
2

] 1
N

Z1D(ω) =

[
N∏
i=1

C2
xx,i + C2

yy,i + C2
xy,i + C2

yx,i

2

] 1
2N

Z1D(ω). (S17)

As the distortion tensor C in the PIM model is the perturbation of the identity matrix, the geometric119

average of ‖Ci‖/2 is slightly greater than unity if the distortion is strong. Therefore, the ssq impedance120

may give the underestimated regional mean 1D conductivity profile under the PIM model.121

Moreover, we can derive the galvanic distortion indicators for the PIM model of galvanic distortion.

With the definition in Eq. (8) in the main text, the local distortion indicator (LDI) for 1D case is

γi =
(C2

xx,i + C2
yy,i + C2

xy,i + C2
yx,i)/2

Cxx,iCyy,i − Cxy,iCyx,i
. (S18)
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From the relationship in Eq. (S15), the LDI is expected to be greater than unity, if the galvanic distortion

exists in the data. Furthermore, we can define the apparent gain in the PIM model. As with Eq. (11)

in the manuscript,

gssqi =
Z ′ssq(ri;ω)

Z̄ ′ssq(ω)
. (S19)

The apparent ssq gain is expected to be a good approximation of the Frobenius gain gfrbi in cases of122

weak and moderate distortion. However, if the galvanic distortion is strong, the apparent ssq gain may123

underestimate the gain derived from the Frobenius norm.124

To examine whether and how the proposed method depends on the choice of galvanic distortion125

model, we made a few tests with the synthetic data distorted under the PIM model of galvanic distortion126

in the similar manner with the example in Section 3 of the main text.127

Each of four elements of D is assumed real-valued random number following the normal distribution128

with zero mean, and the 25 random (Dxx, Dxy, Dyx, Dyy) cohorts for 25 MT stations were then generated.129

We used five SD values—0.1, 0.2, 0.3, 0.4, and 0.5—to control the galvanic distortion strength (Figure130

S11a). Note that with this small number of samples the distribution of (Dxx, Dxy, Dyx, Dyy) cohorts is less131

likely to obey the normal distribution when the SD is large, i.e., greater than 0.3. Note that the Groom–132

Bailey parameterization produces the more significant perturbation at the same SD for the distortion133

parameter distribution (Figure S11b). At each galvanic distortion strength, the (Dxx, Dxy, Dyx, Dyy)134

cohorts are used to calculate the distortion operator using Eq. (S10) and then applied to the 1D synthetic135

data (Figure 2). The det and ssq impedances from the distorted impedance tensors were then averaged136

(Figure S12).137

The models of the regional mean 1D conductivity profiles (Figure S13) were derived from inverting138

the average det and ssq impedances in the same manner (as in Section 3). From the results of applying the139

PIM model of galvanic distortion, the models of regional mean 1D profile from the average ssq impedance140

is shown to be slightly dependent upon the galvanic distortion model, while those from the average det141

impedance is shown to be biased toward more conductive and shallower side. As expected, the average142

ssq impedance slightly overestimates the regional mean 1D impedance, i.e., giving an underestimated143

conductivity profile under the PIM model depending on the SD value. This is partly because defining144

the distortion operator C as the perturbation of the identity matrix gives the geometric average of ‖Ci‖145

over a large number of samples greater than unity. However, the effect is much smaller than the amount146

of bias in the distorted det impedances (Figures S13). The example of the LDIs from distorted data are147
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shown in Figure S14. As expected, the LDIs are greater than unity, if the data is distorted. As with148

using the Groom–Bailey model, the LDIs can point out the presence or absence of the galvanic distortion149

under the PIM model.150

As with Eq. (16) in the main text, the mean apparent ssq gain of the ith station ḡssqi under the

PIM model (Figure S15) is obtained, and it underestimates the Frobenius gain. This is because the

average ssq impedance overestimates the regional mean 1D impedance, as described above. As predicted,

the Frobenius gain and also the mean apparent ssq gain obey the χ2 distribution (Figure S16). The

percentage difference of the mean apparent ssq gain with respect to the Frobenius gain is calculated

using

P(ḡssq,frbi ) =
ḡssqi − gfrbi

gfrbi

× 100. (S20)

The difference is only 6% in all cases.151

Although the mean apparent ssq gain underestimates the Frobenius gain, the underestimation is152

only a few percent (about 6%) even in the case of severe distortion (SD=0.5). Therefore, the apparent153

ssq gain can still be a good approximation of the Frobenius gain.154
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Figure S1. : (a) The geometric (symbols with solid lines) and arithmetic (symbols with dashed lines)

averages of the det (gray diamonds) and ssq (brown squares) impedances from the data distorted with

the Groom–Bailey model, where the distortion parameter cohorts with an SD of 0.3 was applied. These

averages are shown in comparison with the undistorted response (black solid line). (b) The models

estimated from the geometric (solid lines) and arithmetic (dashed lines) average det (gray) and ssq

(brown) impedances. The estimated 1D models are compared with the input 1D model (black dashed

line) and the 1D model estimated from the undistorted data (black solid line).
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Figure S2. : Same as Figure S1 for the PIM model where the (Dxx, Dxy, Dyx, Dyy) cohorts with an SD

of 0.5 was applied.
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Figure S3. : Absolute values of the (a) undistorted and (b) distorted ssq rotational invariants, and the

ratios R2 and R3 (Eqs. S5 and S6, respectively) at the period of 316.2 s calculated from the checkerboard

model (Figure 8 in the main text).
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Figure S4. : Elongated checkerboard model used to demonstrate the effect of structure dimensionality on

the distorted ssq impedance. The size of 10 and 100 Ohm-m anomalies in y-direction is twice of that in

x-direction.
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Figure S5. : (a) Average ssq impedances of the MT responses from the elongated checkerboard (Figure

S4) distorted with different galvanic distortion strengths. (b) The corresponding inverted 1D models

(colored solid lines) and the theoretical models of the mean 1D profiles, σR(z), from this setting both in

linear and logarithmic (Eqs. 3 and 4 in the main text) scaling (black dashed lines) and the 1D model

from the undistorted data (black solid line) are shown for comparison.
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Figure S6. : Absolute values of the (a) undistorted and (b) distorted ssq rotational invariants, and the

ratios R2 and R3 (Eqs. S5 and S6, respectively) at the period of 316.2 s calculated from the elongated

checkerboard model (Figure S4).
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Figure S7. : The MT arrays with different number of stations—(a–e) 4, 9, 16, 36 and 49—for the

calculation of the ratio R̄1 on the checkerboard model used in the main text.
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the checkerboard model (Figure 8 in the main text) at the period of 316.2 s, where the error bar is the

standard error of the ratio R̄1.

21



−3

−2

−1

0

1

lo
g(

A
pp

. R
es

is
tiv

ity
 [O

hm
−m

])

0 1 2 3

Period [s]

−180

−120

−60

0

60

120

180

P
ha

se
 [d

eg
.]

0 1 2 3

Period [s]

(a) xx

0

1

2

3

lo
g(

A
pp

. R
es

is
tiv

ity
 [O

hm
−m

])

0 1 2 3

Period [s]

−180

−120

−60

0

60

120

180

P
ha

se
 [d

eg
.]

0 1 2 3

Period [s]

(b) xy

0

1

2

3

lo
g(

A
pp

. R
es

is
tiv

ity
 [O

hm
−m

])

0 1 2 3

Period [s]

−180

−120

−60

0

60

120

180

P
ha

se
 [d

eg
.]

0 1 2 3

Period [s]

(c) yx

−3

−2

−1

0

1

lo
g(

A
pp

. R
es

is
tiv

ity
 [O

hm
−m

])

0 1 2 3

Period [s]

−180

−120

−60

0

60

120

180

P
ha

se
 [d

eg
.]

0 1 2 3

Period [s]

(d) yy

Figure S9. : Four components of MT impedances from the array of MT stations over the 3D anomalies

(Figure 8 in the main text) without galvanic distortion. Each station is represented by a different symbol

color.
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Figure S10. : Four components of MT impedances from the array of MT stations over the 3D anomalies

(Figure 8 in the main text) with galvanic distortion. The set of distortion parameters (used in the main

text) with an SD of 0.3 was applied. Each station is represented by a different symbol color.
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Figure S11. : (a) Distribution of random (Dxx, Dxy, Dyx, Dyy) cohorts with different SDs. The normalized

occurrence is the number of occurrences divided by the maximum number of occurrence at a single

parameter value. Each distribution is compared with the probability density function of the theoretical

normal distribution for the given SD (dashed lines). (b) Distribution of random (Dxx, Dxy, Dyx, Dyy)

cohorts derived from the Groom–Bailey cohorts (g, t, e, s) used in the main text.
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Figure S12. : Average (a) det and (b) ssq impedances from the 1D datasets distorted with the PIM model

at different galvanic distortion strengths.
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Figure S13. : 1D models obtained by inverting the average (a) det and (b) ssq impedances from the 1D

datasets distorted with the PIM model (Figure S12). The true structure (dashed lines) is also shown for

comparison.
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Figure S14. : LDIs from the distorted 1D data where a set of (Dxx, Dxy, Dyx, Dyy) cohorts with an SD

of 0.5 was applied.
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Figure S15. : Comparison of the Frobenius gains gfrbi (triangles) with the mean apparent ssq gains gssqi

(squares) from the 1D example, where a set of (Dxx, Dxy, Dyx, Dyy) cohorts with an SD of 0.5 was applied.
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Figure S16. : Distribution of 2(gfrb)2 (dashed lines with symbols) derived from the random Dij cohorts

(Figure S11a) and that of 2(gssq)2 (solid lines with symbols) estimated from the distorted dataset. They

are shown in comparison with the normalized theoretical χ2 distribution of the fourth order (black dashed

line).
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