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1 GA filter with one-step or two-step missing mea-
surements

We present the derivation of the GA filter equations (state update and mea-
surement update) involved in the estimation of GRN with one-step or two-
step missing measurements.

1.1 State Update:

Given X̂k−1|k−1 and PXX
k−1|k−1 are available at time k− 1 and are defined as:

X̂k−1|k−1 =

[
x̂a
k−2|k−1

x̂a
k−1|k−1

]
,

PXX
k−1|k−1 =

[
Paa
k−2|k−1 Paa

k−2,k−1|k−1
(Paa

k−2,k−1|k−1)
T Paa

k−1|k−1

]
.

(28)

We assume that vk is uncorrelated with Yk−1. Given the Gaussian as-
sumption in (10) - (11), the Gaussian distributions in (16) and the fact that
p(Xk−1|Yk−1) is Gaussian, then the joint PDF of xa

k−1, xk and vk conditioned
on Yk−1 is also Gaussian:

p(Xk|Yk−1) = N (Xk; X̂k|k−1,P
XX
k|k−1), (29)
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where

X̂k|k−1 = E [Xk|Yk−1]

=

x̂a
k−1|k−1
x̂k|k−1
0N×1

 , (30)

and considering the fact that x̃a
k−1|k−1, x̃k|k−1 and Yk−1 are uncorrelated

with vk, then:

PXX
k|k−1 = E{

x̃a
k−1|k−1
x̃k|k−1

vk

 [x̃a
k−1|k−1 x̃k|k−1 vk|Yk−1]}

=

 Paa
k−1|k−1 Pax

k−1,k|k−1 0(2N2+4N)×N
(Pax

k−1,k|k−1)
T Pxx

k|k−1 0(2N2+3N)×N
0N×(2N2+4N) 0N×(2N2+3N) Rk

 ,
(31)

where x̂a
k−1|k−1 in (30) and Paa

k−1|k−1 in (31) are given in X̂k−1|k−1 and

PXX
k−1|k−1 respectively in (28). However, to obtain x̂k|k−1, Pxx

k|k−1 and Pax
k−1,k|k−1

we do the following.
Given that wk−1 is uncorrelated with Yk−1, and from (5) and (11), we

obtain x̂k|k−1 as follows:

x̂k|k−1 = E [xk|Yk−1]

= E [f(xk−1) + wk−1|Yk−1]

= Eg{f(xk−1)|X̂k−1|k−1,P
XX
k−1|k−1},

(32)

likewise, Pxx
k|k−1 is obtained as follows:

Pxx
k|k−1 = E

[
x̃k|k−1x̃

T
k|k−1|Yk−1

]
= E

[
xkxT

k |Yk−1
]
− x̂k|k−1x̂

T
k|k−1

= E
[
f(xk−1)f

T (xk−1)|Yk−1
]

− x̂k|k−1x̂
T
k|k−1 + Qk−1

= Eg{f(xk−1)f
T (xk−1)|X̂k−1|k−1,P

XX
k−1|k−1}

− x̂k|k−1x̂
T
k|k−1 + Qk−1.

(33)
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Assuming that wk−1 and xa
k−1 are uncorrelated, we obtain Pax

k−1,k|k−1 as
follows:

Pax
k−1,k|k−1 = E

[
x̃a
k−1|k−1x̃

T
k|k−1|Yk−1

]
= E

[
xa
k−1x

T
k |Yk−1

]
− x̂a

k−1|k−1x̂
T
k|k−1

= E
[
xa
k−1(f(xk−1) + wk−1)

T |Yk−1
]

− x̂a
k−1|k−1x̂

T
k|k−1

= Eg{xa
k−1f

T (xk−1)|X̂k−1|k−1,P
XX
k−1|k−1}

− x̂a
k−1|k−1x̂

T
k|k−1.

(34)

1.2 Measurement Update:

After we approximate the predictive PDF with X̂k|k−1 and PXX
k|k−1, the Gaus-

sian approximation of the filtering PDF will be obtained by computing the
first two moments of the augmented state X̂k|k and PXX

k|k. This is achieved
by using the Kalman filter equations:

X̂k|k = X̂k|k−1 + KX
k (yk − ŷk|k−1),

PXX
k|k = PXX

k|k−1 −KX
k Pyy

k|k−1(K
X
k )T ,

KX
k = PXy

k|k−1(P
yy
k|k−1)

−1,

(35)

where KX
k is the Kalman gain. Next, we will derive each of the expressions

in (35).
Substituting the delayed/missing measurement function described in (7)

- (9) into (13) yields:

ŷk|k−1 =

min(k−1,2)∑
d=0

pdkẑk−d|k−1. (36)

Using the equations (7) and (36), the measurement error (innovation) can
be written in terms of the errors in the delayed measurements zk−d:

ỹk|k−1 = yk − ŷk|k−1

=

min(k−1,2)∑
d=0

γdk(zk−d − ẑk−d|k−1)−
min(k−1,2)∑

d=0

(pdk − γdk)ẑk−d|k−1.
(37)
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Given that γdk is independent of measurement zk, substituting (8) - (9) and
(37) into the definition of Pyy

k|k−1 in (13) , we express this conditional covari-
ance as follows:

Pyy
k|k−1 =

min(k−1,2)∑
d=0

pdkPzz
k−d|k−1 +

min(k−1,2)∑
d=0

(pdkẑk−d|k−1ẑ
T
k−d|k−1 − ŷk|k−1ŷ

T
k|k−1),

(38)

and similarly PXy
k|k−1 can be written as:

PXy
k|k−1 =

min(k−1,2)∑
d=0

pdkPXz
k,k−d|k−1. (39)

Next, we must obtain the expressions ẑk−d|k−1, Pzz
k−d|k−1 and PXz

k,k−d|k−1 for
d = 0, 1, 2.

Noting that vk is zero mean Gaussian noise with covariance Rk and it is
independent of Yk−1, then (for d = 0) we obtain ẑk|k−1, Pzz

k|k−1 and PXz
k|k−1

as follows. By using (6):

ẑk|k−1 = E [(h(xk) + vk)|Yk−1]

= Eg{h(xk)|X̂k|k−1,P
XX
k|k−1},

(40)

Pzz
k|k−1 = E

[
(h(xk) + vk)(h(xk) + vk)T |Yk−1

]
− ẑk|k−1ẑ

T
k|k−1

= E
[
h(xk)hT (xk)|Yk−1

]
+ E

[
vkvT

k |Yk−1
]

− ẑk|k−1ẑ
T
k|k−1

= Eg{h(xk)hT (xk)|X̂k|k−1,P
XX
k|k−1} − ẑk|k−1ẑ

T
k|k−1 + Rk,

(41)

and

PXz
k|k−1 = E

[
XkzTk |Yk−1

]
− X̂k|k−1ẑ

T
k|k−1

= E
[
Xk(h(xk) + vk)T |Yk−1

]
− X̂k|k−1ẑ

T
k|k−1

= Eg{Xk(h(xk) + vk)T |X̂k|k−1,P
XX
k|k−1} − X̂k|k−1ẑ

T
k|k−1.

(42)

Similarly, for d = 1, ẑk−1|k−1, Pzz
k−1|k−1 and PXz

k,k−1|k−1 are obtained

ẑk−1|k−1 = E [(h(xk−1) + vk−1)|Yk−1]

= Eg{(h(xk−1) + vk−1)|X̂k|k−1,P
XX
k,k|k−1},

(43)
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Pzz
k−1|k−1 = E

[
(h(xk−1) + vk−1)(h(xk−1) + vk−1)

T |Yk−1
]

− ẑk−1|k−1ẑ
T
k−1|k−1

= Eg{(h(xk−1) + vk−1)(h(xk−1) + vk−1)
T |X̂k|k−1,P

XX
k|k−1}

− ẑk−1|k−1ẑ
T
k−1|k−1,

(44)

and

PXz
k,k−1|k−1 = E

[
XkzTk−1|Yk−1

]
− X̂k|k−1ẑ

T
k−1|k−1

= E
[
Xk(h(xk−1) + vk−1)

T |Yk−1
]
− X̂k|k−1ẑ

T
k−1|k−1

= Eg{Xk(h(xk−1) + vk−1)
T |X̂k|k−1,P

XX
k|k−1)} − X̂k|k−1ẑ

T
k−1|k−1.

(45)

Lastly, for d = 2, ẑk−2|k−1, Pzz
k−2|k−1 and PXz

k,k−2|k−1 are obtained as
follows:

ẑk−2|k−1 = E [(h(xk−2) + vk−2)|Yk−1]

= Eg{h(xk−2) + vk−2|X̂k−1|k−1,P
XX
k−1|k−1},

(46)

Pzz
k−2|k−1 = E

[
(h(xk−2) + vk−2)(h(xk−2) + vk−2)

T |Yk−1
]

− ẑk−2|k−1ẑ
T
k−2|k−1

= Eg{(h(xk−2) + vk−2)(h(xk−2) + vk−2)
T |X̂k−1|k−1,P

XX
k−1|k−1}

− ẑk−2|k−1ẑ
T
k−2|k−1,

(47)

and

PXz
k,k−2|k−1 = E{

x̃a
k−1|k−1
x̃k|k−1

vk

 ẑTk−2|k−1|Yk−1}

=

E[xa
k−1z

T
k−2|Yk−1]− x̂a

k−1|k−1ẑ
T
k−2|k−1

E[xkzTk−2|Yk−1]− x̂k|k−1ẑ
T
k−2|k−1

0N×N


=

E[xa
k−1z

T
k−2|Yk−1]

E[xkzTk−2|Yk−1]
0N×N

− X̂k|k−1ẑ
T
k−2|k−1,

(48)
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where the expectation terms are given by

E
[
xa
k−1z

T
k−2|Yk−1

]
= E

[
xa
k−1(h(xk−2) + vk−2)

T |Yk−1
]

= Eg{xa
k−1(h(xk−2) + vk−2)

T |
X̂k−1|k−1,P

XX
k−1|k−1},

(49)

and
E
[
xkzTk−2|Yk−1

]
= E

[
(f(xk−1) + wk−1)z

T
k−2|Yk−1

]
. (50)

Considering that wk−1 is uncorrelated with zk−2, (50) can be computed
as:

E
[
xkzTk−2|Yk−1

]
= E

[
f(xk−1)z

T
k−2|Yk−1

]
= E

[
f(xk−1)(h(xk−2) + vk−2)

T |Yk−1
]

= Eg{f(xk−1)(h(xk−2) + vk−2)
T |

X̂k−1|k−1,P
XX
k−1|k−1}.

(51)

Finally, given X̂k−1|k−1 and PXX
k−1|k−1 at time k−1, Gaussian approxima-

tions of p(yk|Yk−1) , p(Xk|Yk−1) and p(Xk, yk|Yk−1) are also Gaussian,i.e.,

p(Xk, yk|Yk−1) = N (

[
Xk

yk

]
;

[
X̂k|k−1
ŷk|k−1

]
,

[
PXX
k|k−1 PXy

k|k−1
(PXy

k|k−1)
T Pyy

k|k−1

]
). (52)

With Bayes rule, the GA of p(Xk|Yk) with filtering estimation X̂k|k and the

covariance PXX
k|k at time k of the augmented state is:

p(Xk|Yk) =
p(Xk, yk|Yk−1)

p(yk|Yk−1)
. (53)

The joint PDF is expressed as:

p(Xk, yk|Yk−1) =
1√
|2πΣ|

exp(−1

2

[
X̃T
k|k−1 ỹT

k|k−1

]
Σ−1

[
X̃T
k|k−1

ỹT
k|k−1

]
) (54)

where

Σ =

[
PXX
k|k−1 PXy

k|k−1
(PXy

k|k−1)
T Pyy

k|k−1

]
, (55)
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we rewrite Σ as:

Σ =

[
I2(2N2+4N) KX

k

0N×2(2N2+4N IN

] [
PXX
k|k−1 02(2N2+4N)×N

0N×2(2N2+4N Pyy
k|k−1

][
I2(2N2+4N) 02(2N2+4N)×N

(KX
k )T IN

]
,

(56)
and

|Σ| = |PXX
k|k−1||P

yy
k|k−1|, (57)

where KX
k and PXX

k|k are given in (35). Then Σ−1 is obtained as:

Σ−1 =

[
IL 0m×L
KX

k Im

] [
(PXX

k|k−1)
−1 0L×m

0m×L (Pyy
k|k−1)

−1

][
IL −KX

k )T

0m×L Im

]
. (58)

Substituting (57) - (58) into (54) and coupled with the results obtained in
(36) and (38), (54) becomes:

p(Xk, yk|Yk−1) =
1√

|2πPXX
k|k||2πPyy

k|k−1|
exp{−1

2
(X̃k|k−1 −KX

k ỹk|k−1)
T (PXX

k|k)−1

(X̃k|k−1 −KX
k ỹk|k−1)−

1

2
(ỹk|k−1)

T (Pyy
k|k−1)

−1ỹk|k−1}

= N (Xk; X̂k|k,P
XX
k|k)p(yk|Yk−1).

(59)

Thus, we obtain the posterior PDF p(Xk|Yk) of the augmented state by
substituting (59) into (53) with the mean X̂k|k and covariance PXX

k|k as in

(35).

2 Point based numerical integration

For an l-dimensional random vector x ∼ N (x;µ, P ), the first and second
moments (mean and covariance) of x can be captured by using a set of
points deterministically, called sigma-points. Consider the following nonlin-
ear transformation of x, i.e., y = h(x). The mean and covariance of the
random vector y and the cross-covariance between x and y can be estimated
by propagating each of the sigma points through the nonlinear function,
and these estimates are accurate to the second order (or third order for true
Gaussian priors) of the Taylor series expansion of h(x) for any nonlinear
function [1]. Next, we briefly introduce certain sigma-point based numerical
integration techniques in the literature.
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Unscented Transformation (UT): In the unscented transform, a set of
2l + 1 sigma-points are chosen as

Γo = µ,

Γi = µ+
(√

(l + λ)P
)
i
, i = 1, ..., l,

Γi = µ−
(√

(l + λ)P
)
i−l

, i = l + 1, ..., 2l,

(60)

and their respective weights as

w(m)
o =

λ

l + λ
,

w(c)
o =

λ

l + λ
+ (1− α2 + β),

w
(m)
i = w

(c)
i =

1

2(l + λ)
, i = 1, 2, ..., 2l,

(61)

where
√
P = chol(P ), (P )i represents the ith column of matrix P , α is a

scaling parameter and it is usually a small number, 0 6 α 6 1, in order
to avoid oversampling non-local effects when linearities are strong; β is a
parameter that incorporates prior knowledge of random variable x, β = 2
is optimal for Gaussian distribution [2]; λ = α2(l + κ) − l where κ > 0,
guarantees positive semi-definiteness of the covariance matrix during the
recursive filtering. Then the mean and variance of y and the cross-covariance
of x and y are approximated as:

ŷ ≈
2l∑
i=0

w
(m)
i h(Γi),

Py ≈
2l∑
i=0

w
(c)
i (h(Γi)− ŷ)(h(Γi)− ŷ)T ,

Pxy ≈
2l∑
i=0

w
(c)
i (Γi − µ)(h(Γi)− ŷ)T .

(62)

Third-degree Cubature Rule: The third-degree cubature rule is a special form
of the UT [3]. A set of sigma points Γi, i = 1, ..., 2l, are chosen (one point
short of UT) as follows:

Γi = µ+
(√

lP
)
i
, i = 1, ..., l,

Γi = µ−
(√

lP
)
i−l

, i = l + 1, ..., 2l,
(63)
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with their respective weights as:

w
(m)
i = w

(c)
i =

1

2l
, i = 1, ..., 2l. (64)

The mean and variance of y and the cross-covariance of x and y are calcu-
lated in the same manner as in UT.

Central Difference Rule: In Stirling’s approximation of h(·), the deriva-
tives in the Taylor series are replaced by the central divided differences [4].
Correspondingly, we have 2l + 1 points:

Γo = µ,

Γi = µ+ h
(√

P
)
i
, i = 1, ..., l,

Γi = µ− h
(√

P
)
i−l

, i = l + 1, ...2l,

(65)

with their respective weights as

w(m)
o =

δ2 − l
δ2

, w
(m)
i =

1

2δ2
, i = 1, ..., 2l,

w
(c1)
i =

1

4δ2
, w

(c2)
i =

δ2 − 1

4δ4
, i = 1, ..., l,

(66)

where δ is the step size which can be set to
√

3 for Gaussian distribution.
Given that Yi = h(Γi), the mean and variance of y and the cross-covariance
of x and y are approximated as:

ŷ ≈
2l∑
i=0

w
(m)
i Yi,

Py ≈
l∑

i=0

w
(c1)
i (Yi − Yi+l)(Yi − Yi+l)

T+

l∑
i=0

w
(c2)
i (Yi + Yi+l − 2Yo)(Yi + Yi+l − 2Yo)T ,

Pxy ≈
l∑

i=0

w
(m)
i (Γi − µ)(Yi − Yi+l)

T .

(67)
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3 Algorithm for UKF with one-step or two-step
missing measurements

Let x̂0|0 be the initial state, and Pxx
0|0 be the initial state covariance. The

filter is initialized in the following manner:

x̂a
0|0 =

[
x̂0|0

0N×1

]
, X̂0|0 =

[
0(2N2+4N)×1

x̂a
0|0

]

Paa
0|0 =

[
P0|0 0(2N2+3N)×N

0N×(2N2+3N) 0N×N

]
PXX
0|0 =

[
02N2+4N 02N2+4N

02N2+4N Paa
0|0

]
where N is the number of genes in the network. The algorithm iterates the
following steps (state update and measurement update) for k = 1, 2, ...

State update Approximation of the conditional mean and covariance
of Xk given Yk−1, i.e., X̂k|k−1 and PXX

k|k−1.

1. Given X̂k−1|k−1 and PXX
k−1|k−1, factorize PXX

k−1|k−1 and construct a set

of sigma points,
{

Γi,k−1|k−1, i = 0, ..., 2l)
}

, l = 2(2N2 +4N), and their
respective weights as described in (60) - (61) such that:

Γi,k−1|k−1 =

[
xa
i,k−2|k−1

xa
i,k−1|k−1

]
=


xi,k−2|k−1
vi,k−2|k−1
xi,k−1|k−1
vi,k−1|k−1

 .
2. Compute the propagated sigmal points:

χi,k|k−1 = f(xi,k−1|k−1),

Zi,k−2|k−1 = h(xi,k−2|k−1) + vi,k−2|k−1.

3. Compute the statistics x̂k|k−1, Pxx
k|k−1 and Pax

k−1,k|k−1:

x̂k|k−1 =
2L∑
i=0

w
(m)
i χi,k|k−1,
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Pxx
k|k−1 =

2L∑
i=0

w
(c)
i (χi,k|k−1 − x̂k|k−1)

(χi,k|k−1 − x̂k|k−1)
T + Qk−1,

and

Pax
k−1,k|k−1 =

2L∑
i=0

w
(c)
i (xa

i,k−1|k−1 − x̂a
k−1|k−1)

(χi,k|k−1 − x̂k|k−1)
T .

Then

X̂k|k−1 =

x̂a
k−1|k−1
x̂k|k−1
0N×1

 ,
PXX
k|k−1 =

 Paa
k−1|k−1 Pax

k−1,k|k−1 0(2N2+4N)×N

(Pax
k−1,k|k−1)

T Pxx
k|k−1 0N×(2N2+3N)

0N×(2N2+4N) 0N×(2N2+3N) Rk

 .
Measurement update: Approximation of the conditional mean and
covariance of Xk given Yk, i.e., X̂k|k and PXX

k|k

4. With X̂k|k−1 and PXX
k|k−1 given, construct a new set of sigma points,{

Γi,k|k−1, i = 0, ..., 2l)
}

, l = 2(2N2 +4N), and their respective weights
as described in (60) - (61) such that:

Γi,k|k−1 =

[
xa
i,k−1|k−1
xa
i,k|k−1

]
=


xi,k−1|k−1
vi,k−1|k−1
xi,k|k−1
vi,k|k−1

 .
5. Compute the propagated sigma points:

Zi,k|k−1 = h(xi,k|k−1),

Zi,k−1|k−1 = h(xi,k−1|k−1) + vi,k−1|k−1.

6. Approximate the statistics of zk−2 given Yk−1:

ẑk−2|k−1 =

2l∑
i=0

w
(m)
i Zi,k−2|k−1,
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Pzz
k−2|k−1 =

2l∑
i=0

w
(c)
i (Zi,k−2|k−1 − ẑk−2|k−1)

(Zi,k−2|k−1 − ẑk−2|k−1)
T ,

E
[
xa
k−1z

T
k−2|Yk−1

]
=

2l∑
i=0

w
(c)
i (xa

i,k−1|k−1Z
T
i,k−2|k−1),

E
[
xkzTk−2|Yk−1

]
=

2l∑
i=0

w
(c)
i (χi,k|k−1ZT

i,k−2|k−1),

then

PXz
k,k−2|k−1 =

E [xa
k−1z

T
k−2|Yk−1

]
E
[
xkzTk−2|Yk−1

]
0N×(2N2+3N)

− X̂k|k−1ẑ
T
k−2|k−1.

7. Approximate statistics of zk−1 given Yk−1:

ẑk−1|k−1 =
2l∑
i=0

w
(m)
i Zi,k−1|k−1,

Pzz
k−1|k−1 =

2l∑
i=0

w
(c)
i (Zi,k−1|k−1 − ẑk−1|k−1)

(Zi,k−1|k−1 − ẑk−1|k−1)
T ,

and

PXz
k,k−1|k−1 =

2L∑
i=0

w
(c)
i (Γi,k|k−1 − X̂k|k−1)

(Zi,k−1|k−1 − ẑk−1|k−1)
T .

8. Approximate the statistics of zk given Yk−1:

ẑk|k−1 =
2l∑
i=0

w
(m)
i Zi,k|k−1,
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Pzz
k|k−1 =

2l∑
i=0

w
(c)
i (Zi,k|k−1 − ẑk|k−1)

(Zi,k|k−1 − ẑk|k−1)
T + Rk,

and

PXz
k|k−1 =

2l∑
i=0

w
(c)
i (Γi,k|k−1 − X̂k|k−1)

(Zi,k|k−1 − ẑk|k−1)
T .

9. Approximate the statistics of yk given Yk−1:

ŷk|k−1 =

min(k−1,2)∑
d=0

pdkẑk−d|k−1,

Pyy
k|k−1 =

min(k−1,2)∑
d=0

pdkPzz
k−d,k−d|k−1+

min(k−1,2)∑
d=0

(pdkẑk−d|k−1ẑ
T
k−d|k−1 − ŷk|k−1ŷ

T
k|k−1),

and

PXy
k|k−1 =

min(k−1,2)∑
d=0

pdkPXz
k,k−d|k−1.

10. Calculate the Kalman gain and update X̂k|k and PXX
k|k:

KX
k = PXy

k,k|k−1(P
yy
k|k−1)

−1

X̂k|k = X̂k|k−1 + KX
k (yk − ŷk|k−1)

PXX
k|k = PXX

k|k−1 −KX
k Pyy

k|k−1(K
X
k )T

11. Obtain the filtering estimate x̂k|k and covariance Pxx
k|k of the PDF

p(x|Yk) from X̂k|k and PXX
k|k, respectively.

12. Return to Step 1.

13. k ← k + 1.
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