
S1. Genomic locations of iDMCs 

We carefully explore the genomic locations of the iDMCs from different cancer types.  

Averaging across all cancer types, 22% of the iDMCs are located at the transcriptional start site (TSS), 3% 

are at transcriptional end site (TES), 11% at exonic regions, 32% at intronic regions, and 31% at 

intergenic regions.  Compared with the location of all CpG sites on the 450k arrays, the iDMCs are 

significantly depleted at the TSS (p=6.2e-05), and enriched at the intergenic regions (p= 0.00012). A 

comparison of the iDMC locations is shown in the figure below. These results demonstrate that the 

iDMCs are more likely to appear at relatively less important regions in the genome.   

 

We further explore the genes to which the iDMCs are close. We associate each iDMC to a gene if it’s 

located within 3000 bps to the gene. On average, the top 1000 iDMCs are located in 432 genes (number 

of genes containing iDMC from different cancer types is shown in the figure below), Most (89%) of the 

iDMC-bearing genes contain only 1 or 2 iDMCs, thus the locations of iDMCs are rather dispersed. The 

spatial diversity is desirable and potentially more robust, because the purity estimation result won’t be 

overly influenced by the differential methylation by a few genes.  
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Next, we explore the overlap of iDMCs from different cancer types. Overall, the overlaps are rather low: 

the average pairwise overlaps is only 2.8%. At the gene level, average overlap of iDMC-bearing genes 

among different cancer types is 3.2%, still very low. These results demonstrate the cancer type specificity 

of iDMCs, thus it is necessary to obtain a set of iDMCs for each cancer.  

 

S2. Simulation  

In order to guarantee that the simulated data have characteristics matching the real data, we used LUAD 

data as template in our simulation. Under the assumption that the beta values for each CpG site follow a 

beta distribution, we estimated the distributional parameters (α and β) for all CpG sites from the LUAD 

data. We then simulated normal and pure cancer beta values from these beta distributions. The beta 

values for tumor samples were generated by mixing the simulated pure normal and tumor data with 

randomly generated tumor purities.  

We applied different methods, including minfi, RefFreeEWAS, and InfiniumPurify on the simulated data to 

call DMC, and compared their performances by the ROC curves. Because the true mean methylation 
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levels are known, we can construct the gold standards for comparison. The DM statuses for all CpG sites 

are defined as following. For a CpG site, if the absolute difference (defined as 𝛥) of the true methylation 

levels between normal and pure cancer samples is less than 0.05, it is deemed as non-DM. If the 

absolute difference is greater than a threshold, it is defined as DM. We varied the thresholds to define DM, 

so that the performances of DM calling can be compared under different signal to noise ratios (SNRs). 

We also varied the sample sizes by using 10, 50 and 100 samples in each group. The ROCs curves from 

the simulations are shown in the Figure below.  

 

 

Under all simulation scenarios, InfiniumPurify provides the best results, followed by minif. RefFreeEWAS 

doesn’t perform well, because it is not designed to for this type of comparison, as discussed in the paper.  

It is also clear that when SNR is larger, all methods perform better. For example, when DM is defined as 

absolute difference in mean methylation is greater than 0.2, both minfi and InfiniumPurify have close to 

ss=10, ∆ ∈ (0.05, 0.1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=10, ∆ ∈ (0.1, 0.2]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=10, ∆ ∈ (0.2, 1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=10, overall

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=50, ∆ ∈ (0.05, 0.1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=50, ∆ ∈ (0.1, 0.2]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=50, ∆ ∈ (0.2, 1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=50, overall

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=100, ∆ ∈ (0.05, 0.1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=100, ∆ ∈ (0.1, 0.2]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=100, ∆ ∈ (0.2, 1]

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify

ss=100, overall

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minfi
RefFreeEWAS
InfiniumPurify



perfect performance. This is because the greater effect size can mostly out-weigh the noises brought by 

the purity. Results also show that greater sample size improves the performances for both minfi and 

InfiniumPurify. Overall, these real data based simulation results demonstrate the robustness and 

accuracy of InfiniumPurify in handling the DM calling in cancer study when tumor purity is a concern.  

S3. Control-free DM calling by using universal normal samples 

We also tried another possible DM calling solution when control data is unavailable: to use a universal set 

of normal samples as controls. We compared the results from using universal normal and the proposed 

control-free DM calling. The results from using matched normal are used as gold standard. We 

constructed ROC curves and computed their area under curve (AUCs) for a number of cancer types. The 

AUC values are listed in the table below.  

Tumor type Control free Universal Normal 

BLCA 0.947473765 0.959414333 

BRCA 0.904318612 0.865625316 

COAD 0.908875616 0.888440283 

HNSC 0.884496132 0.911573403 

KIRC 0.748469555 0.658095217 

KIRP 0.755698252 0.767718742 

LIHC 0.899391133 0.882225686 

LUAD 0.915178856 0.909303391 

LUSC 0.835539211 0.854412187 

PRAD 0.903448031 0.854861961 

THCA 0.873077179 0.811470438 

UCEC 0.903636463 0.904246968 

 

Overall, we found that DMCs detected from control free method is slightly better than using universal 

normal (average AUC is 0.8733 for control free method, and 0.8556 for using universal normal). In some 

cases, control free method show rather significant improvement for cancer types with low AUC, including 



KIRC and THCA. These results demonstrate that the control-free DM calling method serves at least as a 

nice alternative to using universal normal, and the results can be better in some situation. 

S4. P and q-values of iDMCs for different tumor types.  

We list the p/q-values, genomic location and associated genes of selected iDMCs for different tumor 

types as follows: 

https://bitbucket.org/zhengxiaoqi/infiniumpurify/raw/b0e0a0b08c43410e8194352aeb1da1cd3d733da0/iD

MC.zip 

 

 


