
Additional File 1: Modification of the Balding

algorithm

Lab Retriever uses the model proposed in [1] to calculate the likelihood of
low-template DNA evidence involving drop-out and drop-in probabilities. More
specifically, given low-template DNA found at a crime scene (known as the
crime scene profile, or CSP), the model calculates the probability of observing
the low-template DNA profile if it was left by a particular person, taking into
account of possible allelic drop-out or drop-in. Though it uses the same model,
we have designed an algorithm to increase the computation speed of Balding’s
original program by many orders of magnitude. Computations that may have
taken hours or days on some machines can now be performed in fractions of a
second.

To understand the algorithmic acceleration, first we present a simplified
version of Balding’s model. This model lacks certain features, such as multiple
loci, masked alleles, and sampling adjustment parameters (Fst/θ), to prevent the
mathematics from becoming too complex. However, these can be incorporated
into the model with relative ease.

For a locus `, denote the set of all alleles of ` as A`, and denote the set
of alleles of ` found in the CSP as CSP`. Denote the frequency of an allele a
in a certain population as p(a). Let the probability of drop-out for one copy
of one allele be Do. The probability of n copies of one allele dropping out is
modeled by αn−1Dn

o for some value α (which is determined experimentally to
be approximately 0.5). Let the probability of drop-in of one allele be Di. The
probability of drop-in of exactly n different alleles is modeled by Dn

i for all
n > 1. The probability of no drop-in for a locus ` is then

1−Di −D2
i − . . .−D

|A`|
i =

1− 2Di +D
|A`|+1
i

1−Di

Denote this value as C̄`. Note in this model, the drop-out and drop-in proba-
bilities do not depend on the source of the allele (whether it is from a suspected
contributor or an unknown individual).

Define a count function that takes a list of alleles T and an allele a, and
returns the number of times a appears in T . Let f`,n be the family of functions

1

that takes a list T of 2n alleles of ` and calculates the following:

f`,n(T) = g`(T)
∏
a∈A`

1− αcount(T,a)−1Dcount(T,a)

o , if a ∈ T, a ∈ CSP`
αcount(T,a)−1D

count(T,a)
o , if a ∈ T, a /∈ CSP`

p(a)Di, if a /∈ T, a ∈ CSP`
1, if a /∈ T, a /∈ CSP`

where

g`(T) =

{
C̄`, if ∀a ∈ CSP`, a ∈ T
1, otherwise

For convenience, the conditions of the piecewise functions above are interpreted
here:

Condition Meaning
a ∈ T, a ∈ CSP` No drop-out occurred for allele a
a ∈ T, a /∈ CSP` Drop-out occurred for allele a
a /∈ T, a ∈ CSP` Drop-in occurred for allele a
a /∈ T, a /∈ CSP` No drop-in occurred for allele a
∀a ∈ CSP`, a ∈ T No drop-in occurred for all alleles in the CSP

Note that if it were possible to assign a person’s alleles an ordering, f`,n
calculates the likelihood that n people, with alleles (T1, T2), (T3, T4), and so
on, were the only DNA contributors to the crime scene considering only the
evidence for locus `. Finally, we can calculate likelihoods of hypotheses involving
unknowns and suspects using the following:

1 unknown =
∑
a11∈A`

∑
a12∈A`

p(a11)p(a12)f`,1([a11, a
1
2])

2 unknowns =
∑
a11∈A`

∑
a12∈A`

∑
a21∈A`

∑
a22∈A`

p(a11)p(a12)p(a21)p(a22)f`,2([a11, a
1
2, a

2
1, a

2
2])

1 suspect with alleles a and b = f`,1([a, b])

1 suspect with alleles a and b, 1 unknown =
∑
a11∈A`

∑
a12∈A`

p(a11)p(a12)f`,2([a, b, a11, a
1
2])

Note that since ordering matters, the case where a person has alleles (a, b) is
different from the case where a person has alleles (b, a); this is practically im-
possible to distinguish, but since the (a, b) and (b, a) cases are twice as common
as the (a, a) cases, the mathematics works itself out. (This corresponds to a
heterozygote’s genotype frequency of 2pq versus a homozygote’s genotype fre-
quency of p2.) Also note that the suspect cases are simply the same as the
unknown cases, conditioning on the knowledge that the suspect has a set of
particular alleles. Astute readers might also notice that the suspect case should

2

consider both [a, b, . . .] and [b, a, . . .], but that can be shown to be equal to the
above.

To further simplify the mathematics, we will focus on improving the like-
lihood computation of the unknowns-only cases; the reader is encouraged to
repeat the analysis and make necessary modifications for the cases involving a
suspect.

The naive approach to implementing this model is to directly compute the
likelihood using the equations above. However, doing so causes the calculation
time to increase dramatically as the number of unknowns increases. To see this,
first note that the calculation time is roughly proportional to the number of
times f`,n is evaluated, which is |A`|2n times. Recall that n is the number of
people involved in the hypothesis (and therefore the number of unknowns). If
A` is fairly large, say 15 or so alleles, then each additional unknown increases the
calculation time by over 200 times. To put this in perspective, the 3-unknowns
hypothesis takes about roughly 20 minutes to an hour. For 4 unknowns, the
calculations would take some time between 3 to 9 days.

The naive algorithm is slow, but that is because there are wasted com-
putations. For example, take the 2-unknowns hypothesis. For any different
alleles a, b, c, and d of some locus `, the naive algorithm calculates f`,2 for all
permutations of the alleles; that is, it calculates f`,2([a, b, c, d]), f`,2([a, b, d, c]),
f`,2([d, a, b, c]), and so on. However, since f`,n is not affected by the order of the
alleles, this value is equal to the number of permutations of the alleles, multi-
plied by f`,2([a, b, c, d]). To utilize this fact in our algorithm, we use the notion
of a multiset of X, which is a function over a set X and maps each element of
X to a non-negative integer, indicating the number of occurrences, or count, of
the element in the multiset. For example, the alleles in the example above can
be represented by a multiset m of A`, where

m(x) =

{
1, x = a, b, c, or d
0, otherwise

As an another example, if the alleles were [a, a, b, c], then the multiset would
look like

m(x) =

 2, x = a
1, x = b or c
0, otherwise

We can define the following operations of a multiset m of A` as follows:

|m| =
∑
a∈A`

m(a) (size)

perm(m) =
|m|!∏

a∈A` m(a)!
(perm. with repeats)

a ∈ m ⇐⇒ m(a) > 0 (membership)

where x! denotes the factorial of x. Also, define Mn(X) as the set of all multisets
m of X, where |m| = n. Define the function sA` , which takes a multiset m of

3

A`, as:

sA`(m) =
∏
a∈A`

p(a)m(a)

1− αm(a)−1D

m(a)
o , if a ∈ m, a ∈ CSP`

αm(a)−1D
m(a)
o , if a ∈ m, a /∈ CSP`

p(a)Di, if a /∈ m, a ∈ CSP`
1, if a /∈ m, a /∈ CSP`

Note that s is similar to f , but not exactly the same. It folds in the probability of
having the alleles of m, and removes the no-drop-in factor. Define the function
t`, which takes a multiset m over A` and returns the multiset where all the
counts of alleles that appear in CSP` are larger by 1. That is, for a particular
multiset m,

(t`(m))(a) =

{
m(a) + 1, a ∈ CSP`
m(a), otherwise

Finally, we can construct the multiset equivalent equation of the model:

n unknowns =

 ∑
m∈M2n(A`)

perm(m)sA`(m)

−
(1− C̄)

∑
m∈M2n−|CSP`|(A`)

perm(m)sA`(t`(m))

which can be verified to be equivalent to the original equation. The equation
above may seem more convoluted than the original equation, but in this form, it
is possible to take advantage of the structure of the two terms of the subtraction
to speed up the computation using dynamic programming.

Let us first consider only the first term and generalize it into a function X,
which takes a set of alleles A and a non-negative integer n:

X(A,n) =
∑

m∈Mn(A)

perm(m)sA(m)

It can be shown that, if Aleft and Aright form a nontrivial partition of A (that
is, Aleft ∪Aright = A;Aleft 6= A;Aright 6= A), then

X(A,n) =

n∑
j=0

(
n

j

)
X(Aleft, j) ·X(Aright, n− j)

A similar equation Y can be constructed for the second part of the subtraction.
Ideally, the partitions should be of roughly equal size. If in the event that
there is only one element in A, then X(A,n) is simply calculated using the first
definition.

By calculating X and Y using the recurrence noted above, we can calculate
the likelihood using the following:

n unknowns = X(A`, 2n)− (1− C̄)Y (A`, 2n− |CSP`|)

4

Thus, the computation time is equal to the time spent calculating X, which is
proportional to the number of calls to X, plus the time spent calculating Y ,
which is proportional to the number of calls to Y . To calculate the number
of calculations needed to solve for X(A, 2n), we define a function T (η, α) that
represents roughly the number of calculations to calculate X(A, η) where |A| =
α. T is defined recursively as follows:

T (η, α) =

η∑
j=0

(
T (j,

⌊α
2

⌋
) + T (η − j,

⌈α
2

⌉
) + 1

)
T (η, 1) = 1

The solution to the recurrence relation here shows that T is on the order of
α1+ log η

log 2 . Thus, to calculate X(A, 2n), we need on the order of |A`|1+
log 2n
log 2

calculations. A similar result can be discovered for Y . Comparing this to the
naive approach, we see that this new algorithm takes less relative time as the
number of unknowns increases.

References

[1] Balding, David J., and John Buckleton. ”Interpreting low template DNA
profiles.” Forensic Science International: Genetics 4.1 (2009): 1-10.

5

