
Fig. S1 GC profile. (A) GC profile of the headspace of the E.coli trans109 strain containing pSTV165HF after incubation for 10 h at 37 °C. (B) GC profile of isoamylene and isoprene standard. (a) 3-methyl-1-butene; (b) 2-methyl-2-butene; (c) 2-methyl-1-butene; (d) isoprene.

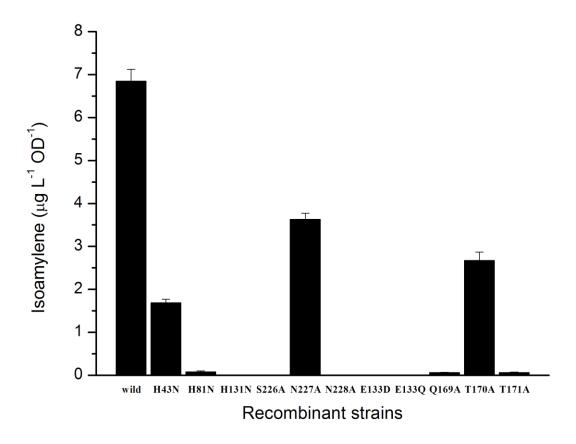

Fig. S2. Iditification of the unkown substances in the headspace of the liquid cultures by GC-MS analysis. Red is the mass spectrum of the sample, Blue is the mass spectrum of the standard. Peak 1, Peak 2 and Peak 3 are identified to be 3-methyl-1-butene, 2-methyl-2-butene and isoprene respectively.

Table S1. Isoamylene and isoprene reaction system production under various conditions

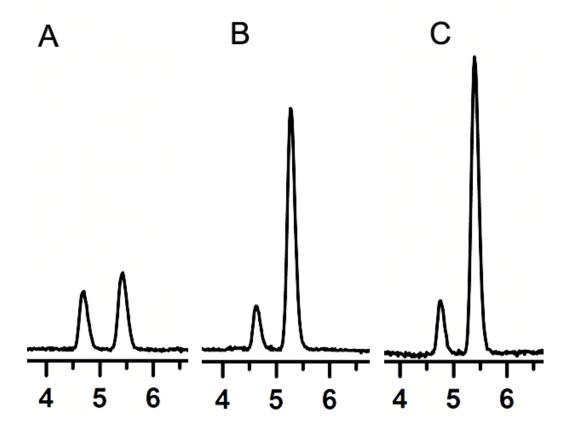

Supplen	nents	Isoamylene/Isoprene				
IspH	FNR	Fdx	Fld	NADPH	Mg^{2+}	production
-	+	+	-	+	+	-
+	-	+	-	+	+	-
+	+	-	+	+	+	-
+	+	+	-	-	+	-
+	+	+	-	+	+	+
+	+	+	-	+	-	+

Fig. S3. Michaelis-Menten plot of the activity of the recombinant protein IspH toward DMAPP. DMAPP concentrations were varied from 0 to 1 mM. The Km value for DMAPP was approximately 275 μ M. The inset shows the Lineweaver-Burk plot.

Fig. S4. Isoamylene production of the recombinant strains in which wild-type IspH and the IspH mutants were expressed. Error bars represent the standard deviations of three replicates.

Fig. S5. GC profile of isoamylene (2M2B and 3M1B) produced by the recombinant *E.coli* strains. A. The production of *E.coli* trans109 strain containing pSTV12HF, the ratio of 2M2B (2.1 μ g/L) and 3M1B (1.4 μ g/L) is approximately 1.5:1. B. The production of of *E.coli* trans109 strain containing pSTV168HF, the ratio of 2M2B (6.1 μ g/L) and 3M1B (1.2 μ g/L) is approximately 5:1. C. The production of the *E.coli* trans109 strain containing pSTV165HF, the ratio of 2M2B (7.3 μ g/L) and 3M1B (1.4 μ g/L) is approximately 5:1.

Table S2 Strains and plasmids in this study

Strain or plasn	nid Genotype or relevant characteristic Source or	Source or reference	
E. coli			
BL21(DE3)	FompT gal dcm lon $hsdS_B(r_B^- m_B^-)$ $\lambda(DE3 [lacI lacUV5-T7gene1 ind1 sam7 nin5])$	TransGen Biotech	
Trans DMT	F $\varphi 80$ lacZ $\Delta M15$ Δ (lacZYA-argF)U169 recA1 endA1 hsdR17(r_K , m_K^+) phoA supE44 thi-1 gyrA96 relA1 tonA	TransGen Biotech	
Trans109	endA1 recA1 gyrA96 thi-1 hsdR17 $(r_k m_k^+)$ relA1 supE44 D (lac-proAB) [F'traD36 proAB laqI qZ Δ M15]	TransGen Biotech	
Bacillus			
Bacillus sp. N16-5	A facultative alkaliphilic strain, producing isoprene	Laboratory stock	
N165D1	Δfer	This study	
N165D2	Δfld	This study	
N165H	Bacillus sp. N16-5 containing pMH	This study	
N165D1H	N165D1 containing pMH	This study	
N165D2H	N165D2 containing pMH	This study	
Bacillus subtilis 168	used for ispH and fer gene amplification	Laboratory stock	
Plasmid			
pSTV28	E. coli cloning vector; Cm ^r	TaKaRa	
pSTV165H	pSTV28 containing the ispH gene from Bacillus sp. N16-5	This study	
pSTV165HF	pSTV28 containing the <i>fer</i> gene and the <i>ispH</i> gene from <i>Bacillus sp.</i> N16-5	This study	
pSTV168HF	pSTV28 containing the <i>fer</i> gene and the <i>ispH</i> gene from <i>Bacillus subtilis</i> 168	This study	
pSTV12HF	pSTV28 containing the <i>fld</i> gene and the <i>ispH</i> gene from <i>Escherichia coli</i>	This study	
pNNB194	Shuttle vector used for gene disruption; Amp ^r Erm ^r	Laboratory stock	
pND1	pNNB194 containing a 1.6 kb fragment fused by two 800 bp homologous regions flanking the <i>fer</i> gene	This study	
pND2	pNNB194 containing a 1.6 kb fragment fused by two 800 bp homologous regions flanking the <i>fld</i> gene	This study	
pMK4	Shuttle vector used for gene expression; Amp ^r Cm ^r	Laboratory stock	
рМН	pMK4 containing the $ispH$ gene under the control of the P_{ldh} promoter	This study	
pET-28a(+)	used for expression of IspH, FNR and ferredoxin proteins from <i>Bacillus</i> sp. N16-5	Novagen	

Table S3 Primers used in this study

Primer	Sequence (5 '→3 ') ^a	Purpose
		pND1
QFLAupF	CG <u>GGATCC</u> ATCACGTGATCATATTATTGC	construction
	TCGTTATTTTAAGGTAGTAGCGCTTGCAAATACGAGTA	pND1
QFLAupR	ATAC	construction
	GTATTACTCGTATTTGCAAGCGCTACTACCTTAAAATA	pND1
QFLAdownF	ACGA	construction
		pND1
QFLAdownR	CG <u>GAATTC</u> GATCAAGTTATGAAGCTTTCACG	construction
		excision
QFLAF	CTATTTCCTTGCTGTTTCCGATGGC	confirmation
		excision
QFLAR	ACATGAGGAGGTAGTTGTTAATGG	confirmation
		pND1
QFERupF	CG <u>GAATTCC</u> TGTAGCCTGTGCTGAATGATG	construction
•	ACCGGTGGCCGATTATTTACACAAAAGCCTCCCATTAA	pND1
QFERupR	AG	construction
•	CTTTAATGGGAGGCTTTTGTGTAAATAATCGGCCACCG	pND1
QFERdownF	GT	construction
		pND1
QFERdownR	CG <u>GGATCC</u> TCAATCAAATGTCATATAAACG	construction
		excision
QFERF	CCATAATCGATACATTACCGTG	confirmation
		excision
QFERR	CATGGTCCATCTCCTAACGTGC	confirmation
		рМН
MPldhupF	CCGGAATTCCTGATGGTAGGACGCTTGTA	construction
•	GGAAATTTTCAAAACCTCCATGTTTAAACATCTACCTT	рМН
MPldh275F	TCCC	construction
	GGGAAAGGTAGATGTTTAAACATGGAGGTTTTGAAAA	рМН
M275PldhR	TTTCC	construction
		рМН
M275downR	CG <u>GGATCC</u> TTAGGCCCGCTCCGCTTTTTTCTCTC	construction

^a Underlined, restriction enzyme recognition sites.