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Abstract 

The timing of puberty may have a substantial impact on adolescent mental health. In 

particular, earlier age at menarche has been associated with elevated rates of depression in 

adolescents. Some preliminary evidence suggests that this relationship is causal, but 

replication and an investigation of the broader generalisability of this finding is warranted. In 

this Registered Report, we will triangulate different causal inference methods using a new 

wave of data from the Norwegian Mother, Father and Child Cohort Study (MoBa). We will 

investigate: (1) to what extent age at menarche is associated with adolescent depression; (2) 

if associations extend to other domains of mental health; and (3) whether links between age 

at menarche and mental health are likely to be causal. The findings will elucidate the impact 

of pubertal timing on mental health and may help inform intervention development. 

Keywords: puberty, age at menarche, adolescent mental health, depression, causal 

inference, mendelian randomisation, registered report 
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Background 

Early pubertal timing has been associated with problems in a wide range of adolescent 

mental health domains (e.g., depression [1–13], anxiety [7, 14, 15], conduct disorders [3, 7, 

16–19], and attention-deficit hyperactivity disorder; ADHD [6]) across different indicators of 

pubertal development and across sexes [20]. The consistency of associations between early 

timing and adolescent mental health has led to the hypothesis that early pubertal timing is a 

transdiagnostic risk factor for psychopathology in adolescents [21]. 

Despite the apparent generality of associations between early pubertal timing and 

adolescent mental health, the prominent rise in rates of female depression beginning during 

puberty [22] has led to this outcome receiving particular empirical focus [23]. Timing of 

puberty in females is commonly indexed using onset of menses (menarche). Earlier age at 

menarche has been associated with elevated depressive symptoms in adolescents in 

several observational studies [4, 24–32], but not in all [33–37], and also higher rates of 

clinical depression during adolescence [31, 37]. However, although early pubertal maturation 

in females has been associated with a wide range of problems in adolescence, these 

associations may dissipate by adulthood [3, 38]. A notable exception in a large prospective 

study was that heightened risk of depression persisted into young adulthood for early 

maturers, in particular for those with a history of conduct disorder [3].  

The association between pubertal timing and depression in adolescent females may be due 

to the biological underpinnings of reproductive maturation. The female sex hormone 

estradiol increases with puberty and is associated with depression [39, 40], and hormonal 

contraceptive use has been associated with higher levels of depressive symptoms, 

especially in adolescence [41]. In fact, it has been found that stage of breast development 

(governed primarily by estradiol) was associated with depression independently of timing of 

menarche in adolescent females from the Avon Longitudinal Study of Parents and Children 
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(ALSPAC) [42]. Interestingly, a recent study in the same sample found that a polygenic 

score for age at menarche showed a potential indirect association with adolescent 

depressive symptoms through stage of breast development [43]. Alongside psychosocial 

pathways (i.e., visible breast development leading to unwanted sexual attention at a younger 

age), increases in estradiol represents a plausible biological mechanism for the link between 

early pubertal timing and depression in females. 

Despite the series of observational studies, it is unknown whether the link between age at 

menarche and depression represents a truly causal relationship. This is important because 

several robust observational associations in epidemiology have turned out not to be causal 

and may instead have been the result of confounding (i.e., vitamin E supplement use and 

cardiovascular disease [44]). In the case of associations between age at menarche and 

depression, body mass index (BMI) is a particularly likely candidate for confounding given 

the robust (and plausibly causal) links between BMI and age at menarche [45] and between 

BMI and depression [46–48]. Failure to appropriately account for potential confounding, 

especially by BMI [4, 25, 27–30, 32–37], has been a relatively common shortcoming of the 

literature on this topic to date. In previous studies that explicitly controlled for BMI, the 

relationship was somewhat attenuated [26, 49]. However, another study also found BMI to 

be a partial mediator of the relationship between earlier menarche and depression [31]. 

Mendelian randomisation (MR) is a causal inference method that can be implemented in 

instrumental variable analyses [50] which is particularly useful when experimental 

manipulation of the variable of interest is not ethical or feasible. Since hundreds of genetic 

variants are strongly linked with age at menarche [51], single nucleotide polymorphisms 

(SNPs) that are independently associated with this phenotype can be used as genetic 

instruments in MR analyses. The logic of MR is analogous to that of a randomised controlled 

trial (RCT). Unlike in an RCT design where individuals are randomly assigned to 

experimental groups, in MR we use random “assignment” to genotype (ensured by the 
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random transmission of one of two possible alleles at each genetic locus from each parent to 

their child at conception [52]). Specifically, these genetic variants are used as instrumental 

variables, serving as a genetic proxy for age at menarche.  

Whereas self-reported age at menarche may be associated with several different 

confounders (even if precisely measured), the genetic instrument is assumed to be 

independent of such confounding. Both the widespread genetic influence on age at 

menarche [51] and the high accuracy and reliability of self-reported age at menarche [53] 

jointly increase the strength of the genetic instrument employed here, which serves to 

improve study power and minimise weak instrument bias [54]. The strength of the genetic 

instrument makes MR especially valuable for advancing menarche research. Provided that 

some important assumptions of MR hold true, we can estimate the causal effects of age at 

menarche on adolescent mental health. 

A previous study found preliminary evidence that the relationship between age at menarche 

and depression in early adolescence may be causal, using MR in ALSPAC (N = 2404) [55]. 

Specifically, they found that early age at menarche resulted in more depressive symptoms at 

age 14 (independent of BMI), but not later in adolescence. However, this study had low 

power due to a modest sample size for MR. Here, we aim to replicate the 14-year analyses 

in adolescents from a larger birth cohort, the Norwegian Mother, Father and Child Cohort 

Study (MoBa) [56]. This replication will allow for a confirmatory and higher-powered test of 

the hypothesis that earlier age at menarche is causally related to adolescent depression.  

Beyond replicating its key finding, we will also extend the previous approach [55] in several 

key ways. First, we will test whether effects of earlier age at menarche extend to other 

domains of mental health (anxiety disorders, conduct disorder (CD), oppositional defiant 

disorder (ODD), and ADHD), independent of associations with depression. Second, we will 

use multivariable methods to examine different confounders or mechanisms, by 
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simultaneously including genetic instruments for childhood body size, adult BMI or estradiol 

in the MR model together with age at menarche. Third, in line with recommendations to 

triangulate evidence across approaches for robust causal inference [57], we will combine 

MR with negative control analyses using symptoms prior to puberty as a negative control 

outcome. This triangulation is particularly important in the context of replication studies, 

given that the same sources of bias could lead to results being replicated in another study 

using the same methodology [58, 59].  

A previous hypothesis-free MR phenome-wide association study identified potential causal 

effects of age at menarche on adult mental health [60], but these were not followed up with 

replication in any independent cohorts. Here we take a confirmatory approach, testing causal 

hypotheses about the role of age at menarche in the aetiology of developing mental health 

disorders. This is important in part because a causal effect of age at menarche may help 

explain the sharp rise in depression rates among females from early adolescence [22]. This 

research might further help with identifying female adolescents at increased risk, facilitating 

early identification and prevention of mental health problems in adolescence and beyond. 

To test our hypotheses we make use of the Registered Report format, demonstrating its 

applicability to epidemiological analyses of cohort data when a new wave of data collection 

ensures that the exposure and outcome data has not been observed prior to the analytic 

choices being made. This format, combined with several sensitivity tests, will strengthen our 

statistical inferences by preserving false positive rates at the specified level [61] and 

ultimately increase confidence in causal conclusions that are drawn.  

In summary, we will address the following questions and hypotheses (detailed overview in 

Additional file 1): 

1. To what extent is age at menarche associated with adolescent depression? 
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a. We hypothesise that earlier age at menarche will be associated with elevated 
depressive symptoms at age 14 (H1a) 

b. We hypothesise that earlier age at menarche will be associated with higher 
rates of depression diagnoses during adolescence (H1b) 

2. Does age at menarche associate with symptoms or diagnoses in other domains of 
mental health (anxiety, CD, ODD, or ADHD), independent of depression? 

a. We hypothesise that age at menarche will be associated with symptoms in 
other domains at age 14, independent of depressive symptoms (H2.1-4a) 

b. We hypothesise that age at menarche will be associated with diagnoses in 
other domains in adolescence, independent of depressive disorders (H2.1-3b) 

3. What is the evidence for a causal link between age at menarche and depression? 

a. We hypothesise that earlier age at menarche will show a causal relationship, 
resulting in elevated depressive symptoms at age 14 (H3a) 

b. We hypothesise that earlier age at menarche will show a causal relationship, 
resulting in higher rates of depression diagnoses during adolescence (H3b) 

4. Is there evidence of causal links between age at menarche and other domains of 
mental health? 

a. We hypothesise that age at menarche will show a causal relationship with 
symptoms in other domains (H4.1-4a) 

b. We hypothesise that age at menarche will show a causal relationship with 
rates of diagnoses in other domains (H4.1-3b) 

 

Methods 

Design 

Sample 

The Norwegian Mother, Father and Child Cohort Study is a population-based pregnancy 

cohort study conducted by the Norwegian Institute of Public Health [56]. Pregnant women 

and their partners were recruited at approximately pregnancy week 17 between 1999 and 

2008. The women consented to participation in 41% of the pregnancies. The cohort now 

includes 114,500 children, 95,200 mothers and 75,200 fathers.  
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In MoBa, phenotype data have been collected by questionnaires from early pregnancy to 

middle childhood, provided primarily by mothers (around week 17, 22 and 30 of pregnancy, 

when the child was 6 and 18 months, and at 3, 5, and 8 years). This project will also make 

use of an ongoing wave of data collection in adolescence (questionnaires returned at ~ 14.5; 

hereafter age 14). The 14-year data were not available to us during the preparation of the 

stage 1 element of the Registered Report. 

Measures 

Exposures. Self-reported age at menarche (in years) from the 14-year questionnaire will be 

included as the main exposure. We will run the observational analyses with both a 

continuous and a categorical (early/average/late) variable based on reported age at 

menarche (the latter to replicate Sequeira et al. [55]). The grouping into ‘early’ (≤ 1 SD below 

the mean), ‘average’ (> 1 SD below the mean and < 1 SD above the mean) and ‘late’ onset 

(≥ 1 SD above the mean) will be based on the distribution of age at menarche in our data. 

Values will be imputed for those who have not yet reached menarche at age 14, using 

information about the stage of pubertal development, as well as all the covariates and 

outcomes (see Additional file 2 for further details about the multiple imputation). We will also 

include self-reported breast stage at age 14 as an additional exposure for sensitivity 

analyses, using a scale from 0-4, from ‘not yet started’ to ‘already complete’.  

Mental health problems. Depressive symptoms will be assessed through the Short Mood 

and Feelings Questionnaire (SMFQ; 13 items) [62]. The SMFQ has demonstrated validity in 

general population samples of children and adolescents [63]. Anxiety symptoms will be 

assessed through a short form of the Screen for Child Anxiety Related Disorders (SCARED; 

5 items) [64]. Behaviour problems (CD, ODD, and ADHD) will be assessed with the Rating 

Scale for Disruptive Behaviour Disorders (RS-DBD; 34 items) [65]. The measures will be 

treated as continuous, and scores will be standardised to have a mean of 0 and standard 
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deviation of 1. Information about psychometric properties of the scales based on the 8-year 

data is provided in Additional files 2 and 3. An overview of all variables included in the study, 

including information about informants and variable processing, is in Additional file 4. 

To facilitate replication of Sequeira et al. [55], the SMFQ will also be dichotomised (with high 

depressive symptoms defined as scoring 11 or above). At this cut-off, the SMFQ has been 

found to have good sensitivity and specificity in predicting International Classification of 

Diseases (ICD-10) diagnosis of depression in late adolescence [66]. If the proportion of 

‘cases’ in MoBa at 14 years using this cut-off differs from ALSPAC (based on a proportion 

test, comparing the percentage of cases in MoBa to the 15.5% cases in Sequeira et al.), we 

will run additional analyses with an adjusted cut-off defining 15.5% of the sample as cases.  

Psychiatric diagnoses. We will link to the Control and payment of health refunds (KUHR) and 

the Norwegian Patient Registry (NPR) to obtain psychiatric diagnoses from medical records. 

KUHR covers primary health care (using codes from The International Classification of 

Primary Care; ICPC-2), whereas NPR covers all public specialist health-care services in 

Norway (using codes from ICD-10). We will extract information on diagnoses of depressive 

disorders (ICPC-2: P76; ICD-10: F32-F33, F34.1), anxiety disorders (ICPC-2: P74, P79, 

P82; ICD-10: F40-F44, F93.0-F93.2), ADHD (ICPC-2: P81; ICD-10: F90) and conduct 

disorders (including both CD and ODD; ICPC-2: P23; ICD-10: F91-F92). Individuals will be 

classified as a “case” in the case-control analysis if they have received a relevant diagnosis 

in either primary or secondary health care during adolescence (between age 10-17). 

Diagnostic status will be imputed for individuals where the beginning or the end of follow-up 

through the registries leads to censoring (see Additional file 2 for further details).  

Covariates. We will include BMI at ages 8 and 14, child age at questionnaire completion, 

maternal and paternal age, parental education and income, financial problems, parental 

cohabitation, number of children in household, maternal prenatal and postnatal depression 
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as covariates (see Additional file 4 for further details). For replication purposes, these 

covariates were selected to match Sequeira et al. (see Additional file 5 for an overview).  

Genotyping and quality control. In MoBa, blood samples were obtained from children 

(umbilical cord) at birth. Approximately 83,500 children have been genotyped (see Additional 

files 2 and 6 for further information about the genotyping) [67]. Quality control (QC) will be 

carried out in PLINK 1.9 and KING 2.2.5 based on the Picopili pipeline for family-based data 

and best-practice QC protocols in human genetics [68]. Pre-imputation QC exclusion criteria 

for SNPs will be: 1) known badly performing SNPs for specific genotyping arrays, 2) low 

minor allele frequency, 3) low genotyping call rate, 4) extreme deviation from Hardy-

Weinberg equilibrium, 5) discordance in duplicate pairs of individuals, 6) association with 

genotype plate and genotype batch, 7) strand ambiguous (A / T and C / G), 8) not present in 

reference panel, or 9) different alleles than reference panel. Pre-imputation QC for 

individuals will be performed by filtering for: 1) heterozygosity outliers, 2) erroneous sex 

assignment, 3) known relatedness errors, 4) cryptic relatedness, 5) identity-by-descent, and 

6) core population outliers both with and without reference to 1000 Genomes. Families with 

more than 5% and SNPs with more than 1% Mendelian errors will also be removed. Phasing 

will be performed using SHAPEIT2 with the duoHMM algorithm to incorporate pedigree 

information into the haplotype estimates. Imputation will be conducted using IMPUTE4. The 

publicly available Haplotype Reference Consortium data will be used as a reference during 

both phasing and imputation. We will also conduct post-imputation QC following the steps 

outlined in the pre-imputation QC after converting dosage data to best-guess, hard call 

genotype data with an imputation quality score (INFO) of 0.8 and certainty of 0.7. 

Genetic instruments for Mendelian randomisation. A recent genome-wide association study 

(GWAS) meta-analysis of 42 studies involving 329,345 post-pubertal women of European 

ancestry found 389 independent signals associated with self-reported age at menarche, 

reaching the conventional threshold for genome-wide significance (P < 5 x 10-8) in the 
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discovery sample [51]. These variants were largely replicated in a sample of 39,543 post-

pubertal women from the Icelandic deCODE study, explaining 7.4% of the variance in age at 

menarche. We will first subset these genome-wide significant variants to single nucleotide 

polymorphisms (SNPs) only by removing insertions and deletions. Then we will extract these 

SNPs (as available) from the genetic data in MoBa, which did not contribute to the GWAS 

meta-analysis. Having subset to genome-wide significant SNPs available in the MoBa 

cohort, we will then clump them for independence (linkage disequilibrium R2 = 0.001, 

clumping window = 10000 kb) in MR-Base using the TwoSampleMR [69] package. For the 

one-sample MR, we will use this set of SNPs to construct a weighted genetic risk score 

based on published GWAS effect estimates. The score will be computed as the weighted 

sum of the age-at-menarche-increasing alleles across the selected SNPs. Specifically, we 

will multiply the number of effect alleles (0, 1, or 2; or if imputed, probabilities of effect 

alleles) at each SNP by their weight (GWAS SNP-trait association), then sum and divide by 

the total number of SNPs used. We will also employ Steiger filtering [70] to create another 

genetic instrument for age at menarche, excluding SNPs that are more predictive of 

depression at age 14 than age at menarche. This serves primarily to prevent reverse 

causation, and to remove potential pleiotropic pathways other than the causal pathway of 

interest. The first 20 principal components will be included in all one-sample MR analyses to 

control for confounding by population stratification.  

For the two-sample MR, the aforementioned set of SNPs will be harmonised using MR-Base 

[69], and we will infer the forward strand alleles using allele frequency information for 

palindromic SNPs (SNPs with minor allele frequency > 0.3 will be discarded, as these 

cannot be reliably inferred). For two-sample multivariable MR (MVMR) analyses accounting 

for estradiol levels, we will use a recently published GWAS in UK Biobank (N = 163,985 

females of European ancestry) which identified 4 SNPs independently associated with 

estradiol (at P < 1 x 10-7) [71]. We will also conduct two-sample MR analyses to account for 
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potential confounding by BMI, for which the most recent female-only GWAS summary data 

will be used. This is due to the important assumption in two-sample MR that the employed 

samples stem from the same underlying population. Because of sample overlap between 

MoBa and the most recent GWAS of BMI in children (which identified 15 SNPs associated 

with childhood BMI [72]), we will use the GWAS of recalled body size at age 10 from the UK 

Biobank (N = 246,511 females), which identified 135 SNPs independently associated with 

comparative early life body size [73]. For adult BMI, we will also use GWAS summary data 

from the UK Biobank (N = 246,511 females), which identified 215 SNPs associated with 

adult-measured BMI [73]. The use of these measures as indicators of separate exposures 

has previously been validated in ALSPAC and employed in an MVMR setting [73]. Finally, to 

mirror how co-occurring depression is accounted for in the observational analyses of other 

mental health domains, we will run MVMR including a genetic instrument for depression. 

This will be based on the latest GWAS meta-analysis of major depressive disorder (N = 

1,154,267), which identified 223 variants independently associated with depression [74]. 

Note that if larger GWAS studies of European ancestry are published after the stage 1 

submission, updated summary statistics will be used, and this change will be reported in the 

stage 2 submission. 

Statistical analysis 

Observational analyses 

First, we will run linear regression analyses to estimate the observational associations 

between age at menarche and continuous symptom outcomes, accounting for the effects of 

covariates (described above). In addition, we will run logistic regression analyses to estimate 

observational associations with the dichotomised SMFQ and diagnostic outcomes from 

registry data, accounting for the effects of covariates. 
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Mendelian randomisation analyses 

To avoid problems related to confounding and reverse causation common to traditional 

observational methods, MR uses j genetic variants G1, G2, …, Gj as a proxy for the exposure 

X to estimate the association between the exposure X and the outcome Y (see Figure 1 for 

an illustrative diagram) [50]. The obtained estimate is assumed to be independent of 

potential confounders U. This assumption builds on Mendel’s first and second law of 

inheritance [52]. That is, genetic variants will not generally be associated with confounders if 

a) the likelihood that a germ cell with a particular genetic variant contributes to a viable 

pregnancy is independent of the environment (Mendel's first law), and if b) genetic variants 

segregate independently (Mendel’s second law).  

 
Figure 1. Directed acyclic graph illustrating the Mendelian randomisation design.  

Gj is the j-th genetic variant, with effect 𝜙j on confounders U, direct effect 𝛾j on exposure  

X, and direct effect ɑj on outcome Y. 𝜃 is the estimated causal effect of the exposure on  

the outcome. Dotted lines represent possible violations of the MR assumptions.  

 

MR assumptions. The three main assumptions of MR are: 1) that the instrument Gj is 

associated with the exposure X, called the relevance assumption, 2) that there are no 

unmeasured confounders of the gene-outcome association U, called the independence 

assumption, and 3) that the genetic variants Gj affect the outcome Y only through the 
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exposure X, called exclusion restriction. While assumption 1) can be verified empirically, 

assumptions 2) and 3) are empirically unverifiable (but potentially falsifiable). Owing to how 

instrumental variable analyses are estimated, violations of these assumptions may lead to 

strong biases in the estimates; therefore, such estimates should be interpreted with care and 

in conjunction with other evidence [75]. Several sensitivity analyses that have been 

developed to address potential bias from violations of the MR assumptions will be employed 

here. 

One-sample MR. In the one-sample MR analyses of continuous symptom variables, we will 

employ two-stage least squares (2SLS) regression. In the 2SLS approach, self-reported age 

at menarche X is first regressed on the genetic variants Gj, obtaining the predicted values. In 

the second stage the regression of the outcome Y on the exposure X is estimated as usual, 

replacing self-reported age at menarche with the predicted values from the first stage; 

hereafter referred to as “genetically predicted age at menarche”. We include covariates in 

these analyses to increase statistical efficiency, and to control for any residual population 

stratification. When outcomes are excessively skewed (based on the skewness test 

implemented in the moments package in R [76]) or for binary outcomes (for which a logistic 

model will be used in the second stage), we will apply a post-estimation correction of the 

standard errors (the HC1 option in the sandwich R package [77]). This replicates the ivreg2 

command in Stata with the robust option, used in Sequeira et al.  

As a sensitivity analysis, we will carry out linear regression analyses between the genetic 

risk score and the covariates used for the one-sample MR. The measured covariates serve 

as proxies for some of the potential confounders of the relationship between the exposure 

and outcome. If the genetic risk score is associated with a confounder, the second 

assumption of MR is violated. If the risk score is associated with a potential confounder, and 

a suitable GWAS exists (i.e., for BMI [73], or education [78]) then we will run additional 

MVMR analyses with genetic instruments for those covariates included as an additional 
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exposure. Whether we run these follow-up analyses is contingent on the genetic 

instrument(s) satisfying the relevance assumption of MR (i.e., conditional instrument strength 

F > 10), based on the modified Qx statistic (see below).  

We will also carry out linear regression analysis of the exposure on the genetic instrument 

for age at menarche and calculate the F-statistic to evaluate the relevance assumption. A 

common rule of thumb is that if F < 10, the instrument is considered weak [54]. Here, the 

criterion of F > 10 for age at menarche must be met to successfully test the hypotheses that 

are based on one-sample MR (H3a, H3b, H4.1-4a, and H4.1-3b). In Sequeira et al. this 

value was F = 114.9, indicating a very strong instrument (based on a previous GWAS of age 

at menarche).  

Combining one-sample MR with two-sample MR analyses is beneficial even when the same 

outcome sample is used, since any bias from weak instruments would skew the one-sample 

estimate towards the (confounded) observational estimate and the two-sample estimate 

towards the null [79]. Also, two-sample MR allows for additional sensitivity analyses that 

assume independence between the gene-exposure and gene-outcome estimates. 

Two-sample MR. In the two-sample MR analyses, only the genotype-outcome (G-Y) 

association is estimated in MoBa. For these analyses (using the TwoSampleMR package 

[69]), we will extract estimates for the genotype-exposure (G-X) association from summary-

level data from the age-at-menarche GWAS [51] and produce a set of SNP-specific Wald 

estimates by calculating the ratio between the G-X and the G-Y (estimated in MoBa) 

associations. We will test the heterogeneity between the Wald ratios using SNP-specific 

Cochran’s Q statistics. Then, these estimates are combined using the inverse variance 

weighted (IVW) meta-analysis approach to obtain an estimate of the causal effect. We will 

then use several sensitivity methods to assess whether this estimate is affected by 

horizontal pleiotropy, further described below.  
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We expect pleiotropic effects in our study, which means that the employed genetic variants 

may affect multiple biological pathways. Specifically, pleiotropic effects via BMI are likely. 

Vertical pleiotropy, where the genetic variants affect other traits through the exposure, is 

consistent with a causal interpretation [80]. On the other hand, horizontal pleiotropic effects 

could bias our findings, as it violates the instrumental variable assumptions. Horizontal 

pleiotropy means that the genetic variants affect the outcome through other pathways than 

the exposure of interest. 

We will employ a standard battery of two-sample sensitivity analyses, which have been 

developed mainly to address the third MR assumption: that the SNPs used to instrument the 

exposure only influence the outcome through the exposure. The standard IVW method 

assumes that there is no directional horizontal pleiotropy (where pleiotropic effects are 

biasing the estimate in the same direction), which is an assumption that is likely to be 

violated. Mendelian randomisation-Egger (MR-Egger) regression allows all instruments to be 

subject to horizontal pleiotropy but has the lowest power to detect a causal effect among 

these approaches [80]. The MR-Egger intercept can be used to assess bias from directional 

horizontal pleiotropy. MR pleiotropy residual sum and outlier (MR-PRESSO) is also used to 

test for the presence of directional pleiotropy, and additionally detect outliers [81]. The MR-

PRESSO test consists of three parts: a) the global test, which detects horizontal pleiotropy, 

b) the outlier-corrected causal estimate, which corrects for any detected pleiotropy, and c) 

the distortion test, which tests whether the MR estimate is significantly different after 

adjustment for outliers. In addition, we will use the weighted median estimator, which 

assumes that the genetic variants representing over 50% of the weight in the analysis are 

valid instruments [82]. The contamination mixture method assumes that only some of the 

genetic variants are valid instruments and has a well-controlled type 1 error rate compared 

to similar approaches [83]. These five methods make different (to some extent orthogonal) 
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assumptions about horizontal pleiotropy, and we consider effects that are consistent across 

these approaches to be more likely causal, in line with a triangulation approach.  

Multivariable MR. It is also possible to estimate the effects of multiple exposures 

simultaneously, using MVMR [84]. Including multiple genetic instruments in the same 

analysis is valuable when the exposures being studied are highly correlated. Here, we will 

use summary data (described above) and the MVMR package 

(https://github.com/WSpiller/MVMR/) to estimate the direct causal effect of age at menarche 

on mental health while adjusting for BMI. Within the MVMR setting, the first MR assumption 

is that the instrument is robustly associated with the exposure, conditional on the remaining 

exposures in the model [85]. This is quantified by the modified Qx statistic (estimating 

heterogeneity in gene-exposure effects), where a higher degree of heterogeneity indicates 

greater instrument strength. We will convert Qx to the conventional F statistic to evaluate 

conditional instrument strength (with a threshold of F > 10 for each instrument). The second 

and third assumptions in MVMR are direct extensions of the univariate MR assumptions 

described above. We will employ MVMR-Egger, MVMR-Median, and MVMR-Lasso [86] as 

sensitivity analyses to test for violations of these assumptions in the multivariable setting. 

We will also run two-sample MVMR with estradiol included as an exposure, although this 

analysis will likely be limited by imbalanced instruments. If F < 10 based on the modified Qx 

statistic, we will restrict our interpretation to the direct effect of age at menarche accounting 

for estradiol and avoid interpreting the effect of estradiol on the outcome. For this analysis, 

leave-one-out analyses and single-SNP plots will be used as sensitivity analyses due to the 

limited number of SNPs available.  

Equivalence testing 

Because null hypothesis significance testing cannot support substantive interpretations of 

non-significant results, we will employ equivalence testing to quantify support for the null 
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hypothesis [87]. This is done by testing whether the 90% confidence intervals (CIs) for the 

effect size overlap with pre-specified equivalence bounds for the smallest effect size of 

interest (SESOI). Note that we use the 90% CIs for the observational analyses rather than 

the 95% CIs, as the effect size is tested against two equivalence bounds (the lower and 

upper) with two separate one-tailed tests. If the 90% CIs are inside the equivalence bounds, 

this will indicate that the effect size is surprisingly small given that an effect as large as the 

SESOI exists. If the 90% CIs are not entirely within the equivalence bounds, this will indicate 

that the effect size is of a meaningful magnitude.  

Negative control analyses 

Since an individual’s age at menarche cannot influence their mental health prior to puberty, 

childhood symptoms can serve as a negative control outcome in our study. Such analyses 

can be used to detect unmeasured confounding, also in the context of MR, given that the 

negative control outcome is associated with confounders in a similar way to the outcome of 

interest [88]. Here, we will focus on comparing the estimates for continuous outcomes before 

puberty (at 8 years) and after puberty (at 14 years), by employing equivalence testing to 

determine whether the 14-year estimate is statistically equivalent to zero after accounting for 

unmeasured confounding by setting the equivalence bound to the upper bound of the 8-year 

estimate.  

Sampling plan 

Inclusion criteria and sample size 

We will include all MoBa females (as registered at birth in the Medical Birth Registry; MBRN) 

with any available phenotype data. We have a sample size of N = 20,225 females with 

phenotype data and expect N ⋍ 15,500 (genotype QC is ongoing) with both phenotype and 

genotype data at age 8. The observed response rate has been between 30-34% in those 
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who have already received the 14-year MoBa questionnaire. Conservatively projecting a 

30% return rate, we expect N ⋍ 12,500 females with phenotype data and N ⋍ 10,000 with 

both phenotype and genotype data at age 14. We will run the observational analyses in the 

largest available sample of 14-year questionnaire responders, and then restrict these 

analyses to only genotyped individuals as a sensitivity analysis. 

We have estimated the expected prevalence of diagnostic outcomes, derived from registry 

data, at the anticipated time of analysis and in the analytic sample (14-year questionnaire 

returners with and without genetic data). To do this we calculated rates for all relevant 

diagnoses among female MoBa participants who already have registry follow-up for all years 

between the ages of 10 and 17 (inclusive). We projected these onto 100 random samples 

(50 with N = 12,500 and 50 with N = 10,000) of girls whose mothers responded to the 

previous MoBa questionnaire (see Additional file 7: Supplementary Code for full details). The 

projected prevalence rates were 13.5% for depression, 16.1% for anxiety, 2.5% for CD/ODD, 

and 13.9% for ADHD.  

Missingness/handling of missing data. Within the 14-year sample, we will use multiple 

imputation (MI) to account for missing data, specifically because of two anticipated forms of 

censoring in the data. The first is that some individuals will likely report having not yet had 

their first menstrual period in the 14-year questionnaire. Imputed values for age at menarche 

for these individuals will not be allowed to be lower than 14 years. The second form of 

censoring is in the linked registry data, which has missing data about early life diagnoses for 

the oldest MoBa participants (because linkage is only available since 2008). In addition, at 

the time of carrying out the analyses, the linked registries will have missing data about 

diagnoses in the later years of adolescence for younger MoBa participants (because they 

will not have yet turned 18 by 2021, the last year for which complete registry linkage is 

expected to be available). Further details on the multiple imputation are presented in 
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Additional file 2. In addition to MI, we will use inverse probability weighting to address 

potential bias from selective attrition out of the study over time (details in Additional file 2).  

Definition/removal of outliers. We will retain all valid responses to the questionnaires. If 

participants ticked multiple boxes on a single-response item, their response on this item is 

set to missing. If respondents complete less than half of the items for a given scale, their 

scale score is not computed and their data for this variable is considered missing. For other 

phenotype data, values > 4 standard deviations from the mean will be treated as outliers and 

coded as missing (e.g., to remove implausible height/weight values used to calculate BMI). 

Power calculations 

Power analyses were conducted in R by simulation for all null hypothesis significance tests 

(NHSTs) and equivalence tests used to investigate each hypothesis. Details of the 

simulations and analyses are given in brief below, with full information and code presented in 

Additional file 7.  

Data generation. For all power analyses, we simulated 1000 replicate datasets under various 

possible scenarios of data availability and effect sizes. For analyses with diagnoses as 

outcomes, we also varied case rates within plausible ranges. For all replicates across all 

scenarios and analyses, we began by simulating an age at menarche variable, sampling 

from a normal distribution with a mean of 151.52 (months) and standard deviation of 14.11 

(values from Sequeira et al. [55]), rounded to the nearest year (to replicate the response 

format of the age at menarche item in the MoBa 14-year questionnaire). The simulated 

variable was allowed to take values > 14 years, meaning that all power analyses assume 

imputation of this variable (see Additional file 2) has already taken place. Details of the other 

variables simulated in the power analyses for each hypothesis are given below. 
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Power calculation. Power for NHSTs (detailed below) was calculated empirically as the 

proportion of replicates in each scenario in which the null hypothesis was rejected with a 5% 

alpha. Power for equivalence tests (detailed in Additional file 2) was calculated empirically as 

the proportion of replicates in each scenario in which the null hypothesis of the equivalence 

test (i.e., in the case of a two-tailed test, that an effect is not equivalent to zero; and in the 

case of a one-tailed test, that an effect is not smaller than the SESOI) was rejected with a 

5% alpha. 

Hypotheses 1a/b. For H1a we additionally simulated a depressive symptoms variable (M = 

5.71, SD = 4.93; values from Sequeira et al. [55]), with a floor effect at 0. In the range of 

scenarios simulated for this hypothesis, the correlation between age at menarche and 

depressive symptoms was specified at each r from 0 to -0.15 in increments of 0.01, for 

sample sizes of 12,000 and 13,000 respectively. Results indicated 95% power to detect an 

effect of Cohen’s D ≥ 0.08 at N = 12,000 and ≥ 0.06 at N = 13,000 (full results for all 

scenarios are presented in Additional file 8: Figure S1). For H1b we additionally simulated a 

binary depression diagnosis variable, based on a pre-specified prevalence and association 

with age at menarche (varied across scenarios at, respectively, 2%, 6%, 10%, 14% and D = 

0 to -0.26 in increments of 0.02). Results indicated 95% power to detect an effect of Cohen’s 

D ≥ 0.14 at both N = 12,000 and N = 13,000 for depression prevalence of 6% or higher (full 

results for all scenarios are presented in Additional file 8: Figure S2). 

Hypotheses 2.1-4a/2.1-3b. For H2.1-4a we additionally simulated anxiety, CD, ODD, and 

ADHD symptoms, with distributions based on the same variables in MoBa data at 8 years. 

As for hypothesis 1a, we simulated data for scenarios with age at menarche-outcome 

correlations specified from 0 to -0.15 in increments of 0.01, for sample sizes of 12,000 and 

13,000 respectively. Results indicated 95% power to detect an effect of Cohen’s D ≥ 0.12 at 

both simulated sample sizes (full results for all scenarios are presented in Additional file 8: 

Figure S3). For H2.1-3b, the simulation was essentially identical to H1b (with different 
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equivalence bounds and use of two-tailed tests - see Analysis plan below for details). 

Results indicated 95% power to detect an effect of Cohen’s D ≥ 0.20 at N = 12,000 and ≥ 

0.18 at N = 13,000 for diagnosis prevalence of 2% or higher (full results for all scenarios are 

presented in Additional file 8: Figure S4). 

Hypotheses 3a/b. For H3a we additionally simulated a genetic instrument for age at 

menarche (M = 0, SD = 1), and a depressive symptoms variable as per H1a. The R2 of the 

genetic instrument for the simulated age at menarche variable was set at 0.05, 0.075, and 

0.10 across scenarios. The association between simulated age at menarche and the 

depressive symptoms variable was based on the average causal effect (specified from D = 0 

to -0.30 in increments of -0.01 across scenarios) plus an observational confounding effect 

(drawn randomly from a normal distribution M = 0, SD = 0.05 on the D scale for each 

replicate). Results indicated 95% power to detect an average causal effect (using 2SLS MR) 

of Cohen’s D ≥ 0.2 when the R2 of the instrument is 0.075 or above at either simulated 

sample size (full results for all scenarios are presented in Additional file 8: Figure S5). For 

H3b we again simulated the genetic instrument for age at menarche at R2 0.05, 0.075, and 

0.10 across scenarios. As per H1b, a depressive diagnosis outcome was simulated with 

prevalence ranging from 0.02 to 0.14 across scenarios, with its relationship to simulated age 

at menarche parameterised as the causal odds (specified from D = 0 to -0.30 in increments 

of -0.02 across scenarios) plus an observational confounding effect as in H3a above. 

Results indicated 95% power to detect a causal effect (using logistic 2SLS MR with robust 

standard errors) of Cohen’s D ≥ 0.24 when the R2 of the instrument is ≥ 0.075 and 

depression prevalence 14% at either simulated sample size (full results for all scenarios are 

presented in Additional file 8: Figure S6). 

Hypotheses 4.1-4a/4.1-3b. Simulations for H4.1-4a were essentially identical to those for 

H3a (with different equivalence bounds and use of two-tailed tests - see Analysis plan below 

for details). Results indicated 95% power to detect an average causal effect (using 2SLS 
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MR) of Cohen’s D ≥ 0.2 when the R2 of the instrument is 0.10 at either simulated sample size 

and 80% power to detect Cohen’s D ≥ 0.2 with the R2 of the instrument at ≥ 0.075 (full 

results for all scenarios are presented in Additional file 8: Figure S7). Simulations for H4.1-3b 

were essentially identical to those for H3b (with different equivalence bounds and use of two-

tailed tests - see Analysis plan below for details). Results indicated 95% power to detect a 

causal effect (using logistic 2SLS MR with robust standard errors) of Cohen’s D ≥ 0.26 when 

the R2 of the instrument is ≥ 0.075 and diagnosis prevalence is 14% in either simulated 

sample size and 80% power for Cohen’s D ≥ 0.20 in the same scenarios (full results for all 

scenarios are presented in Additional file 8: Figure S8).  

Analysis plan 

We will conduct all statistical analyses in R version > 4. Below we describe the statistical 

analyses that will be used to test each of the hypotheses. Each null hypothesis significance 

test performed as part of these analyses corresponds to a single theoretical prediction. This 

allows alpha for each test to be preserved at 5% without multiple testing correction, but 

substantially narrows the nature of the theoretical model being investigated in each case, 

and accordingly reduces the breadth of the conclusions that can be drawn. Statistical tests 

and inference criteria for each hypothesis are detailed further in Additional file 1. The MR 

results will be reported according to Strengthening the reporting of observational studies in 

epidemiology using Mendelian randomisation (STROBE-MR) guidelines [89, 90]. All models 

will be run with and without the covariates described above to obtain adjusted and 

unadjusted estimates, and inferences will be based on the adjusted estimates. All models 

will also be run with both a continuous and categorical score for self-reported age at 

menarche, to facilitate replication of Sequeira et al. [55] where a categorised score was 

used. Inferences from the main analyses will be based on the estimates using the 

continuous age at menarche score. 
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Question 1: To what extent is age at menarche associated with adolescent 

depression? 

Hypothesis 1a. First, we hypothesise that earlier age at menarche will be associated with 

elevated depressive symptoms at age 14. We will run a linear regression model with age 

of menarche as the independent variable and depressive symptoms at age 14 as the 

dependent variable. We will then add 8-year depressive symptoms as a covariate, to 

examine whether age at menarche is associated with post-pubertal symptoms independent 

of pre-pubertal symptoms. We will also run the same analyses with a dichotomised version 

of the SMFQ as the outcome, as in Sequeira et al. 

In line with our directional hypothesis and one-tailed null hypothesis significance test, we will 

apply an equivalence test only using an upper bound (sometimes called an “inferiority” test).  

This tests whether the null hypothesis of an effect at least as large as the SESOI can be 

rejected. We derive the SESOI for this analysis based on the lower end of the confidence 

interval of a meta-analytic estimate (as recommended by Lakens, Scheel, and Isager [91]) of 

age at menarche and depressive symptoms in adolescents. This conservative approach was 

deemed appropriate given the potential for bias in the literature (estimated to have a small 

and positive impact on the magnitude of results for early pubertal timing and internalising 

behaviours in the meta-analysis by Ullsperger and Nikolas [20]). Because they did not 

estimate the specific association with depression, we conducted a meta-analysis of the 

studies of community adolescents that they included [24, 29, 31, 38, 49] which had data on 

age of menarche and depressive symptoms (see Additional file 7 for further details, and the 

script used to run the meta-analysis). The pooled association of 5 eligible studies of age at 

menarche and depressive symptoms in early-to-mid adolescence was D = 0.28 (95% CI = 

0.23 - 0.33). Our SESOI is the lower CI bound of this estimate (i.e., D = 0.23). 
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We will make the inference that hypothesis 1a is supported if 1) the coefficient for the effect 

of age at menarche on 14-year depressive symptoms is significantly less than zero (one-

tailed test; alpha 5%) in the pre-pubertal symptoms-adjusted model; and 2) we fail to reject 

the null hypothesis that this effect in the population is at least as large as the SESOI (one-

tailed test; alpha 5%). The interpretation of all potential patterns of results is in Additional file 

1. 

Sensitivity analyses. In addition, we will run a linear regression with breast stage instead of 

age at menarche included as the predictor, and then a multiple regression with both breast 

stage and age at menarche included as predictors, replicating previous observational 

analyses of breast stage in ALSPAC [42]. Both models will be adjusted for 8-year depressive 

symptoms. Breast stage is an indicator of pubertal stage, which at any point in time during 

adolescence will be more advanced in those who began puberty earlier (i.e., those with 

earlier age at menarche). Thus, we first investigate whether breast stage is associated with 

14-year depressive symptoms in isolation, and then the relative contribution of each in a 

multivariable model including both breast stage and age at menarche. This sensitivity 

analysis will be repeated for all subsequent observational analyses.  

Hypothesis 1b. We hypothesise that earlier age at menarche will be associated with 

higher rates of depression diagnoses during adolescence. We will run a logistic 

regression model with age of menarche as the independent variable and depression 

diagnosis as the dependent variable. This analysis will include any depression diagnosis in 

either primary or secondary health care during adolescence (age 10-17). We will additionally 

co-vary for depression status prior to puberty (age 0-8) if rates of pre-puberty diagnoses are 

sufficiently high and evenly distributed across levels of the outcome variable to allow model 

convergence.  
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We will make the inference that hypothesis 1b is supported if 1) the coefficient for the effect 

of age at menarche on odds of depression diagnoses is significantly less than zero (one-

tailed test; alpha 5%) in the pre-pubertal depression status-adjusted model; and 2) we fail to 

reject the null hypothesis that this effect in the population is at least as large as the SESOI 

(one-tailed test; alpha 5%). 

Question 2: Does age at menarche associate with symptoms or diagnoses in 

other domains of mental health, independent of depression? 

Hypotheses 2.1-4a. We hypothesise that the association with age at menarche will 

extend to other symptom domains: anxiety (H2.1a); CD (H2.2a); ODD (H2.3a); and 

ADHD (H2.4a). To test each hypothesis, we will run linear regression models to examine 

associations between age at menarche and each symptom domain at age 14. We will then 

add depressive symptoms at age 14 as a covariate in each model to examine whether any 

associations in other domains are independent of co-occurring depressive symptoms. 

Finally, we will also add a measure of each symptom domain at age 8 as a covariate in the 

age 14 model for that domain, to examine whether associations between age at menarche 

and post-pubertal symptoms are additionally independent of pre-pubertal symptoms (these 

are referred to as the “fully adjusted” models below).  

We will use the lower end of the CIs of a meta-analytic estimate of age at menarche and 

general psychopathology in adolescents to determine the SESOI across domains because 

precise meta-analytic estimates are not available or feasible to derive for each of the 

domains (e.g., the number of studies of age at menarche and ADHD is limited). The pooled 

association of 42 studies in Ullsperger and Nikolas 20 was D = 0.27 (95% CI = 0.22 - 0.31). 

Based on the lower end of the CIs we will use equivalence bounds of -0.22 - 0.22 in our 

analysis. 
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We will infer support for hypotheses 2.1-4a if 1) the coefficient for the association between 

age at menarche and a domain of 14-year symptoms in the fully adjusted model is different 

from zero (two-tailed tests, 5% alpha); and 2) we fail to reject the null hypothesis that the 

association in the population is at least as extreme as the SESOI in either direction (two one-

tailed tests, 5% alpha). The interpretation of all potential patterns of results is in Additional 

file 1. 

Hypotheses 2.1-3b. We hypothesise that the association with earlier age at menarche 

will extend to diagnoses in other mental health domains: anxiety disorders (H2.1b); 

conduct disorders (H2.2b), including CD and ODD; and ADHD (H2.3b). For these 

analyses, we will run logistic regression models to examine associations between age at 

menarche and odds of receiving each diagnosis during adolescence (age 10-17). We will 

first add depression diagnostic status (age 10-17) as a covariate, then pre-pubertal 

diagnostic status (age 0-8) in each relevant domain to each model, to examine whether 

associations between age at menarche and diagnoses in other domains are independent of 

both comorbid depression and prior diagnoses.  

We will infer support for hypotheses 2.1-3b if 1) the coefficient for the association between 

age at menarche and a diagnosis in the fully adjusted model is different from zero (two-tailed 

tests, 5% alpha); and 2) we fail to reject the null hypothesis that the association in the 

population is at least as extreme as the SESOI in either direction (two one-tailed tests, 5% 

alpha). 

Question 3: What is the evidence for a causal link between age at menarche 

and depression? 

Hypothesis 3a. We hypothesise that earlier age at menarche will show a causal 

relationship with elevated depressive symptoms at age 14. In the one-sample MR 

analysis, we will use 2SLS regression to test the relationship between the genetic risk score 
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for age at menarche and depressive symptoms at age 14 (see Methods for a further 

description). We will also run the same analyses with a dichotomised version of the SMFQ 

as the outcome, answering whether we can replicate the result at 14 years in Sequeira et al. 

To test for potential bias in this estimate from unmeasured confounding, we will conduct a 

negative control MR analysis using depressive symptoms prior to puberty as a negative 

control outcome. Specifically, we will run the same 2SLS model with depressive symptoms 

at 8 years as the outcome. A relationship between genetically predicted age at menarche 

and childhood depressive symptoms would be temporally implausible, indicating 

unmeasured confounding. There are no established statistical procedures to refine the MR 

estimate by factoring in the negative control outcome. It has been suggested that calibrating 

the putative causal estimate with a quantitative contrast between the negative control and 

the main estimate could lead to bias (for further detail see Sanderson et al. [88]). Therefore, 

we will focus on testing for the degree of confounding rather than refining the MR estimate. 

To formally test whether the extent of observed confounding is sufficient to account for the 

observed effect at 14-years, we will subject the 14-year effect to an equivalence test, setting 

the equivalence bound to the upper bound of the 8-year estimate.  

We used the “small telescopes” approach [92] for setting the SESOI, which is particularly 

suitable for replications. In this approach, the SESOI is set to the effect size that the original 

study had 33% power to detect. The idea is that based on this power level, the probability of 

observing an effect (if a true effect exists) is too low to reliably distinguish signal from noise. 

We calculated the effect size the original study would have 33% power to detect using the 

mRnd power calculator for Mendelian randomisation [93]. We used the values from the 

original study [55] to determine the effect size (N = 2,404, ɑ = 0.05, K = 0.155, R2
XG = 0.049) 

where N is the sample size, ɑ is the Type-I error rate, K is the proportion of cases in the 

study, and R2
XG is the proportion of variance explained for the association between the 

genetic variants Gj and the exposure X. The resulting effect size was D = 0.25, which was 
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selected as the SESOI for this analysis. In line with our directional hypothesis and one-tailed 

null hypothesis significance test, we again apply an inferiority test (setting and testing on an 

equivalence bound at the SESOI only in the predicted direction). 

We will infer support for hypothesis 3a (that earlier age at menarche causes elevated 

depressive symptoms at age 14) if 1) the coefficient for the causal effect of age at menarche 

on 14-year depressive symptoms is significantly less than zero (one-tailed test; alpha 5%); 

2) we fail to reject the null hypothesis that this causal effect in the population is at least as 

large as the SESOI (one-tailed test; alpha 5%); and 3) we fail to reject the null hypothesis 

that this causal effect in the population is at least as large as the upper bound of the 

negative control (8-year) estimate (one-tailed test; alpha 5%). The interpretation of all 

patterns of results is described in Additional file 1. 

Sensitivity analyses. The traditional MR approach described for H3a above assumes that 

there is no horizontal pleiotropy. We expect that the most likely threat to this assumption is 

pleiotropy via childhood body size/BMI. Previous studies have attempted to solve this by 

excluding SNPs associated with childhood (as a proxy for ‘pre-pubertal’) and/or adult (as a 

proxy for ‘post-pubertal’) BMI [55]. However, excluding adult BMI SNPs in particular risks 

inducing a spurious association with depression, due to collider bias [94]. We will therefore 

conduct an MVMR analysis with genetic instruments for age at menarche, childhood body 

size and adult BMI included in the same model - which estimates the direct effect of age at 

menarche on the outcome. MVMR accounts for any overlap analytically, whereas excluding 

SNPs associated with BMI based on P-values will likely miss SNPs below the employed 

threshold. Finally, like the MVMR with BMI, we will also run a model including the genetic 

instrument for estradiol to test the direct effect of age at menarche on depressive symptoms 

when accounting for estradiol (see Methods).  
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In addition, we will conduct several sensitivity analyses to assess the three main 

assumptions of MR: 1) that the instrument is associated with the exposure, 2) that the 

genetic variants are independent of all confounders, and 3) that the instrument affects the 

outcome only through the exposure of interest. To evaluate the assumptions, we use 1) F-

statistics for the instrument-exposure association (where F > 10 is required), 2) regression of 

the covariates on the genetic risk score (statistically significant relationships indicate 

potential confounding), and 3) MR sensitivity analyses. In both the one-sample and two-

sample setting we will exclude SNPs that are associated with more variation in depression 

than age at menarche (see Methods for a description). If the causal relationship is then 

attenuated, this may suggest the existence of other pleiotropic pathways or reverse 

causation. We will also employ two-sample MR sensitivity analyses: MR-Egger, MR-

PRESSO, weighted median and the contamination mixture method (see Methods). The MR-

Egger intercept and MR-PRESSO global test are used to test for bias from directional 

horizontal pleiotropy. For MR-Egger, a significant intercept will be considered indicative of 

bias from directional horizontal pleiotropy. For MR-PRESSO, we will report the outlier-

corrected causal estimate if both the global test and the distortion test are significant. More 

broadly, the purpose of these sensitivity tests is to ensure that the MR results are valid, and 

violations of any MR assumptions will therefore temper our inferences. However, sensitivity 

analyses such as MR-Egger are subject to their own biases, and therefore the strongest 

indication that results are unlikely to be biased by horizontal pleiotropy would be consistent 

evidence across the different methods.  

Hypothesis 3b. We further hypothesise that earlier age at menarche will result in higher 

rates of depression diagnoses during adolescence. As for hypothesis 1b, we will run 

these binary outcome MR analyses with individuals diagnosed either in primary or secondary 

health care during adolescence as cases (age 10-17). We will also run the same MR 

sensitivity analyses as in H3a, including the negative control MR analysis using depression 
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diagnoses during childhood as the outcome (age 0-8). Here, we will compare the direction, 

magnitude, and precision of the estimates for the main outcome and negative control 

outcome to determine the degree of unobserved confounding.  

We will infer support for hypothesis 3b if 1) the coefficient for the causal effect of age at 

menarche on depressive disorders is significantly less than zero (one-tailed test; alpha 5%); 

2) we fail to reject the null hypothesis that this causal effect in the population is at least as 

large as the SESOI (one-tailed test; alpha 5%). 

Sensitivity analyses. Here, we will conduct all sensitivity analyses described in H3a above.  

Question 4: Is there evidence of causal links between age at menarche and 

other domains of mental health? 

Hypothesis 4.1-4a. We hypothesise that age at menarche will be causally linked with 

symptoms in other domains: anxiety (H4.1a); CD (H4.2a); ODD (H4.3a); and ADHD 

(H4.4a). To test each of these hypotheses, we will use 2SLS regression to investigate the 

relationship between the genetic risk score for age at menarche and each symptom domain 

at age 14. We will also run negative control analyses using the corresponding symptom 

domains at age 8 as negative control outcomes. For these analyses, there were no prior MR 

studies to base our estimated effect size on. Therefore, our SESOI will be D = 0.20 (i.e., 

what is considered a small effect size, in the absence of a clear theoretical justification).  

Thus, the equivalence bounds will be -0.20 - 0.20.  

We will infer support for hypotheses 4.1-4a if 1) the coefficient for the causal effect of age at 

menarche on a domain of 14-year symptoms is different from zero in the fully adjusted 

model (two-tailed tests, 5% alpha); 2) we fail to reject the null hypothesis that the causal 

effect in the population is at least as extreme as the SESOI in either direction (two one-tailed 

tests, 5% alpha); and 3) we fail to reject the null hypothesis that the causal effect in the 
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population is at least as large as the upper bound of the negative control (8-year) estimate 

(one-tailed test; alpha 5%). The interpretation of all patterns of results is in Additional file 1. 

Sensitivity analyses. Here, we will conduct the two-sample sensitivity analyses described in 

H3a above (MR-Egger, MR-PRESSO, weighted median and contamination mixture). We will 

also conduct MVMR analyses accounting for BMI and estradiol. In addition, we will seek to 

account for the potential overlap between depression and symptoms in other domains 

(mirroring the observational analyses) by including a genetic instrument for depression 

alongside age at menarche in an additional MVMR analysis (see Methods).  

Hypothesis 4.1-3b. Here, we hypothesise that the genetic risk score for age at menarche 

will be associated with diagnoses in other domains: anxiety disorders (H4.1b); 

conduct disorders (H4.2b), including CD and ODD; and ADHD (H4.3b). To test each of 

these hypotheses, we will use 2SLS regression to test the relationship between the genetic 

risk score for age at menarche and diagnoses of each condition. These analyses will include 

any relevant diagnosis in either primary or secondary health care during adolescence (age 

10-17). As for H4.1-4a, we will run negative control analyses using the corresponding 

conditions during childhood as outcomes (age 0-8). We will compare the direction, 

magnitude, and precision of the estimates for the main outcomes and negative control 

outcomes to determine the degree of unobserved confounding. Here, we will use 

equivalence bounds of Cohen’s D -0.20 - 0.20, as in H4.1-4a.  

We will infer support for hypotheses 4.1-3b if 1) the coefficient for the causal effect of age at 

menarche on a diagnosis is different from zero (two-tailed tests, 5% alpha); and 2) we fail to 

reject the null hypothesis that the causal effect in the population is at least as extreme as the 

SESOI in either direction (two one-tailed tests, 5% alpha). 

Sensitivity analyses. Here, we will run the same sensitivity analyses as in H4.1-4a above.  
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Additional file 4.  

Overview of variables in the study, with details about items, reporters, and processing. 

Additional file 5.  

Overview of variables included in the ALSPAC study and similar variables available in MoBa, 

for replication purposes. 

Additional file 6.  

Summary of the arrays and batches used in the genotyping of the whole Norwegian Mother, 

Father, and Child Cohort. 

Additional file 7.  

Supplementary code containing scripts for data preparation, power analyses, and the 

analyses on which primary inferences will be made for each hypothesis, in each aim.  

Additional file 8.  

Results of power analyses based on simulated data for the null hypothesis significance tests 

and the equivalence tests for hypotheses 1-8 (Fig. S1-S8). 
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