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1 Proof of equation (4)

As was pointed out by Frishman1, the ratio of the expectations of two random variables is
not necessarily equal to the expectation of the ratio of the variables. Formally,

E
(

Y
X

)
=

E(Y )
E(X)

−
Cov(X , Y

X )

E(X)
,

where X and Y denote the random variables. In the manuscript in equation (4), we have

E(X) = ni j

E(Y ) = e j,

which thus does not necessarily equal ai j = E(Y/X). Here, we show that in our case
E(Y/X) = E(Y )/E(X) holds. For this, we use the Notation of Frishman. Let Y denote the
time spent in a state, and X captures the number of episodes.

First, note that E(Y/X) is not defined, as X can equal 0; in a sense, the average length
of episodes is not defined if there are no episodes. Instead, as described in the paper we
use E(Y/X |X > 0); i.e., we condition on observing at least one episode. This can also be
done for the right-hand side of Frishman’s equation:

E
(

Y
X
|X > 0

)
=

E(Y |X > 0)
E(X |X > 0)

−
Cov(X , Y

X |X > 0)
E(X |X > 0)

.

Next we argue that Cov(X , Y
X |X > 0) equals 0 due to the Markov property. Consider, for

instance, a simple illness-death model. Every time an individual transitions from healthy
to ill the length of the time she stays ill is not determined by previous periods of illness.
Because of this, the second term on the right-hand side of the equation above equals zero.

Finally, we show that

E(Y |X > 0)
E(X |X > 0)

=
E(Y )
E(X)

,

and thus that equation (4) is correct. Moving from E(Y ) to E(Y |X > 0) and from E(X) to
E(X |X > 0), respectively, only requires multiplication with 1/Pr(X > 0). First, E(Y ) =

∑
∞
y=0 Pr(Y = y)y = ∑

∞
y=1 Pr(Y = y)y. Second, as summation is running from y = 1 to

higher values, Pr(Y = y)/Pr(X > 0) = Pr(Y = y|X > 0), as Pr(Y = y) = Pr(Y = y,X > 0)
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for y≥ 1. This means that

1/Pr(X > 0)E(Y ) =
∞

∑
y=1

Pr(Y = y)/Pr(X > 0)y

=
∞

∑
y=1

Pr(Y = y|X > 0)y

= E(Y |X > 0).

The same argument holds for E(X) and E(X |X > 0). Thus,

E(Y |X > 0)
E(X |X > 0)

=
1/Pr(X > 0)E(Y )
1/Pr(X > 0)E(X)

=
E(Y )
E(X)

.

As part of the R code we provide simulations and a numerical example which lend
further support to our theoretical result. Specifically, we provide two simulation setups.
The first setup is similar in structure to the first case study we present in the main paper,
while the second setup uses the state space of the second case study. For each setup, we
generate 250 thousand sampling paths, and calculate the average length of episodes based
on this data. Comparing results to the analytical solution provided by equation (4) shows
that estimates match and that differences are negligible. The numerical example included
in the R code is constructed in such a way that the average length of episodes in the state
of interest is equal 1. Equation (4) also provides correct results in this case.

2 Bootstrap simulation setup

To assess whether the block bootstrap or the model-based bootstrap perform better in
settings with and without correlated transitions, we conducted a small simulation study.
We simulate transition data for large populations with different degrees of correlation
between transitions, draw samples of different sizes, and apply both the model-based and
the block bootstrap. The resulting estimates of the variance are compared to the true values.

More specifically, we created transition data for three populations of 250,000 individuals
each. For each individual, between one and nine transitions are generated, using a state
space as shown in Figure 1, with two transient and one absorbing state. The initial state an
individual is in is drawn from the two transient states, each with the same probability. In
the first population, all individuals follow the same transition probabilities, and transitions
are drawn i.i.d. given the starting state si.

For the second and the third population, different data-generating processes are used
and unobserved heterogeneity is introduced. Both populations consist of two groups with
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Figure 1: State space of the simulated data.

different transition probabilities, with the first group being more likely to stay in, or move
to, state 1, whereas the second group is more likely to be observed in state 2. Group
membership is drawn randomly. Except for simulating and generating the data of the
populations, group membership is assumed to be unknown and not accounted for when
applying Markov chain methods. This unobserved heterogeneity amounts to a non-i.i.d.
setting and induces serial correlation of states. For the first non-i.i.d. population groups
are more similar than for the second population, which shows strong heterogeneity. The
specific transition matrices used for all three populations are given in the supplementary
materials.

From both the i.i.d. and the non-i.i.d. populations 5,000 samples of 50, 100, 250, 500,
and 1,000 individuals are drawn, always using all transitions per individual. For each of
the resulting 75,000 samples, transition probabilities are estimated using the ML estimator
for pi j, and based on the resulting transition matrix we calculate estimates of the expected
time spent in state 1, n1, as well as the expected number of episodes in state 1, e1. We
estimate the sampling variance of n̂1 and ê1 based on both the model-based bootstrap as
well as the block bootstrap, using 5,000 bootstrap replications for each. Estimates for
n2 and e2 will not be reported, as they are highly correlated with e1 and n1, and thus the
findings are very similar to those for e1 and n1.

For each setting (i.i.d./non-i.i.d. population, sample size) we assess the performance of
the bootstrap methods by calculating their relative bias, (E[sesim]− setrue)/setrue, where
setrue is the true standard error as calculated based on the 5,000 samples, and E[sesim] is
the average bootstrap standard error estimate based on all 5,000 bootstrap replications.

All of the calculations were conducted using the freely available statistical software R
and the Matrix package;2,3 this is also the case for the case studies presented in the next
section. All code is available online. The figures were created using tikz.4
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Table 1: Results of the bootstrap simulation study; relative bias by method, sample size,
and data-generating process

Multinomial bootstrap Block bootstrap
Sample size 50 100 250 500 1000 50 100 250 500 1000

i.i.d. data-generating process
se(n1) 0.11 0.04 0.00 -0.02 -0.01 0.07 0.03 0.01 0.00 0.00
se(e1) 0.09 0.03 0.00 -0.01 -0.01 0.07 0.04 0.01 0.01 0.01

non-i.i.d. data-generating process (1)
se(n1) 0.19 0.02 -0.04 -0.07 -0.06 0.19 0.07 0.03 0.00 0.00
se(e1) 0.22 0.03 0.00 -0.03 -0.03 0.20 0.05 0.03 0.00 0.00

non-i.i.d. data-generating process (2)
se(n1) 0.24 -0.08 -0.13 -0.15 -0.15 0.22 0.05 0.02 0.00 0.00
se(e1) 0.31 0.12 0.09 0.09 0.08 0.17 0.03 0.01 0.01 0.01

3 Bootstrap simulation results

Results of our simulations are shown in Table 1. The upper part of the table shows results
for the population created using the i.i.d. data-generating process, whereas the middle and
the lower part give results for the populations with unobserved heterogeneity. For instance,
when the block bootstrap is applied to the i.i.d. data-generating process and the sample size
is 1,00, then on average the standard error estimated by the block bootstrap is between 3%
(se(e1)) and 4% (se(n1)) higher than the true value.

Relative bias differs considerably by sample size and data generating process. In case of
i.i.d. sampling relative bias is mostly negligible, except for very small samples, as can be
seen in the upper part of the table; the model-based and the block bootstrap perform equally
well. When there is unobserved heterogeneity, but only to a small degree, as is shown in
the middle part of the table, the model-based and the block bootstrap again perform well
for large samples; but for very small sample size of 50 individuals relative bias can be
considerable for both bootstrap methods. In case of strong heterogeneity (lower part of the
table), the two bootstrap methods differ more: If sample size is small relative bias again is
observed to be sizable, but it decreases more slowly with sample size for the model-based
method than for the block bootstrap. For the latter relative bias is mostly small, whereas
for the model-based bootstrap it can be high even for moderate-sized and large samples.

Overall, the block bootstrap seems to perform better when the i.i.d. assumption is
violated. If the data generating process is i.i.d., both methods perform well. Irrespective of
the bootstrap method and the data generating process small sample size seems problematic,

5



and both the model-based and the block bootstrap will overestimate the true sampling
variation.
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