
 

 

Additional File 1 – Additional Results 

Appendix 1: Functional principal components and `time series’ applied in two-stage 

modelling framework 

Functional principal components 

Functional principal components (FPC) analysis is an extension of principal components analysis 

for temporal or spatial longitudinal information (1, 2). The method assumes a true subject-specific 

latent (unobserved) trajectory for each predictor in the CPM (1). The use of FPC analysis for 

longitudinal CPMs is similar to that of ME modelling in that the rate of change, or covariate process 

is captured in the subject-specific random effects. More specifically in FPC analysis, the method 

defines different characteristics of the covariate trajectory, for each individual, in a set of K FPC 

scores (1, 3). The number of components K can be determined by the proportion of variance 

explained by the first K components (i.e. the first K components which explain 95% of the variance) 

(3). These K FPC scores can then be entered into a binary or time-to-event model (TS framework) (1, 

3). The primary aim of the method is to capture variations and patterns in the covariate trajectory 

within and between individuals in the cohort (1, 2).  

FPC analysis produces a non-parametric function to summarise individual covariate trajectories 

over time.  This non-parametric function is made up of a population-level mean trajectory, K eigen 

functions which reflect pattern variations, and their corresponding K FPC score for each individual 

(1-4). As individual deviations from the population mean trajectory are captured in the FPC scores, 

these are the only aspects which are then carried over into a CPM for event prediction (1, 3). Using 

parameters which have already been estimated on the model development cohort, the FPC scores 

for a new individual can be calculated in the same way as it is for model development (1).  

The key difference between ME modelling and FPC analysis is that no assumption is required about 

the shape or trend of the covariate trajectory, this avoids any loss of predictive accuracy from miss-

specified parametric functions (1, 2). FPC analysis is particularly advantageous when longitudinal 

measurements are sparse and irregularly measured (1-3).  

One of the limitations is that the FPC scores and covariate trends cannot be graphically presented 

on the same scale as the true values, but the eigen functions presented are linearly proportional to 

the true values (1). This means that the covariate pattern would be identical to that of the eigen 

function derived from the FPC analysis.  

The FPC analysis approach has recently been extended to consider multivariate longitudinal 

trajectories which may be highly-correlated with each other (3). It has also been extended to the 

TDCM framework with time-varying coefficients, to allow for updated predictions using moving 

time windows (2, 4, 5).  

 



 

 

Time series 

Three-level hierarchical autoregressive models have been proposed to harness irregularly-measured 

covariate values for individual patients, to infer the covariate values at regularly-spaced time points, 

and to account for random interpatient and residual variability in the data (6). These were used in 

conjunction with a Cox regression model and an Accelerated failure-time (AFT) model (6).  

The Kalman Filter, has been employed in CPM development to remove uninformative noise and 

measurement error from the underlying trajectory, and to infer the true value of a covariate at the 

time of prediction (7). The Kalman filter is able to identify multi-dimensional latent states through 

which the underlying process transitions, and uses previous measurements to infer the true latent 

state of the predictor variable at prediction time.   

The Kalman Filter offers more flexibility in the specification of the underlying trajectory than a linear 

mixed model, and therefore could be a preferred method for longitudinal covariates with a highly-

variable continuous outcome.  

Appendix 2: Joint modelling variations 

This section will describe and differentiate between the three different variations of joint models 

used for clinical risk prediction.  

The shared random effects joint model 

The first and most popular type of joint model found in the literature for incorporating longitudinal 

information into clinical risk prediction is called the shared random effects (SRE) model (8). The 

traditional SRE model would only include the random effects themselves within the survival or 

binary event sub-model (9-11); however these can become difficult to interpret when enhanced 

mixed-effects models are used to model the covariate trajectory (12).  

The distinct features of the SRE framework are that it assumes conditional independence between 

the longitudinal and survival outcomes on the random-effects, it assumes a homogenous 

population, and the random-effects from the mixed-effects model specification capture both the 

correlation between within-subject measurements as well as the dependency between the 

longitudinal covariate and the outcome of interest (8, 14).  

Extensions of this approach involve including predicted values of the longitudinal covariate in a 

time-dependent survival model, as well as other association structures such as the trajectory slope 

at a pre-specified time (15-17), or the area under the trajectory (18-20). These model extensions are 

required to be chosen a priori because the computational intensity of joint modelling specification 

limits the use of automatic variable selection algorithms (21). Rizopoulos (2014) proposed a Bayesian 

Model Average algorithm to allow predictions to be made for an individual from multiple SRE 

models with the different association structures described above (19, 22). 



 

 

Albert (2012) also proposed a computationally attractive two-stage SRE framework to predict a 

binary event from repeated measurements of a single covariate by using a probit model to link the 

longitudinal and binary outcome, and a simple Gaussian assumption for the random effects (9). 

However, if the random effects could derive from a mixture of normal distributions then numerical 

optimisation techniques are required such as Newton-Raphson algorithm, or multivariate Gaussian 

quadrature (9). A more generalised approach to this framework for multivariate longitudinal 

outcomes has also been introduced by Kim et al. in 2012 (11). 

The SRE JM has also been further extended to model time-dependent random-effects, time-varying 

coefficients (18), and include a third sub-model alongside the longitudinal and survival models to 

acknowledge non-ignorable missing data or an underlying cure fraction (23-26).  

SRE model specification can be performed under both a frequentist (Newton-Raphson or 

Expectation-Maximisation algorithm) or under a Bayesian framework (using the Markov Chain 

Monte Carlo algorithm). Estimation processes for the SRE model are distinct to the below Joint 

Latent Class Model. Shared Random Effects (SRE) joint models can be implemented using the JM 

and JMbayes packages on R.  

The joint latent class model 

Proust-Lima and Taylor proposed a Joint latent class model (JLCM) for CPM development in 2009, the 

proposed model is reported to be more computationally-efficient than the SRE model (8, 14). Unlike 

the shared random effects (SRE) model which assumes conditional independence between the 

covariate trajectory and the time-to-event outcome on the random-effects, this method conditions 

independence on a latent class structure (8, 14).   

The survival probability over the next t years is solely dependent on the probabilities of belonging 

to each latent class rather than the specific covariate trajectory characteristics (14). The probability 

that an individual belongs to each latent class is conditioned on subject-specific covariates, and is 

usually modelled using a multinomial logistic regression model. The longitudinal covariate 

information is modelled using a mixed-effect model just like the SRE joint models described above. 

However, for this framework, the random effects for each individual are also dependent on the latent 

class group.  

Unlike the SRE model, the random effects in the ME model only capture the within-subject 

correlation between measurements, and the latent classes capture the dependency between the 

longitudinal covariate and the outcome of interest (8). Moreover, this framework assumes a 

heterogeneous population rather than a homogeneous one, which could be divided into a collection 

of latent classes (8). This approach has been extended to incorporate multivariate longitudinal 

information (27, 28), and with multi-state models to inform screening strategies (29). 

Although this framework appears to have had little attention in comparison to the SRE model for 

CPM development, it is reported to hold some advantages over the SRE specifically for clinical risk 



 

 

prediction (8). The main reported advantage of this framework is that it is computationally more 

efficient as the integration over the random effects which is required for the SRE model, is replaced 

by a summation over the latent classes (8). However, it is also reported that the estimation process 

would need to be repeated to ensure convergence and to choose an appropriate number of latent 

classes (8). Another reported advantage is that the JLCM framework is designed to describe the 

observations without specific assumptions about the association a priori (8). One of the main 

drawbacks of the SRE model for individual risk prediction is that the random effects specification 

needs to be correctly specified (9). 

Specifically for the JLCM, the model parameters can be estimated using maximum likelihood 

estimation from the Marquardt algorithm but strict convergence criteria are required, more details 

can be found here (8). Bayesian estimation processes are limited here as the latent-class specific 

parameters need to be permutated, this does not cause any problems for maximum likelihood 

estimation however (8). Joint Latent Class Models (JLCMs) can be implemented using the lcmm 

package on R. 

The joint frailty model for recurrent events 

Joint frailty models (JFM) are distinct to the joint models described above because their focus is on 

simultaneously modelling recurrent events and a terminal event. A traditional JFM will not include 

a sub-model for the covariate trajectory, but a model for recurrent events, so a proportional hazards 

model on each interval between events, as well as a proportional hazards model for the terminal 

event (30, 31). These two models will share what is referred to as a “frailty” term which is a random 

effect that can account for the correlation between recurrent events, and/or the association between 

the two different outcome types (31). 

Although JFMs as a stand-alone framework are not incorporating longitudinal information in the 

same way as the two frameworks described above, conceptually they are modelling an informative 

process and how this is associated with the outcome of interest. Extensions to incorporate covariate 

trajectory modelling as well as recurrent events to predict the risk of a terminal event have been 

proposed (31). This involves a third sub-model for the covariate trajectory which could be specified 

in the same way as before, including nonlinear mixed-effects models (32).  

Various versions of the Gaussian-Hermite quadrature algorithm are available for model 

specification depending on required computational efficiency (31). All applications discovered by 

the systematic search had used the frailtypack package on R (30-35). The frailtyPenal function in this 

package allows for frailty models to be used for interval-censored and clustered outcomes whilst 

also accounted for left-truncation caused by delated entry (35). 

 

 



 

 

Appendix 3: Machine learning algorithms – Additional information 

Gradient/Adaptive Boosting 

Gradient Boosting iteratively generates a sequence of decision trees, based on the misclassification 

of individuals by a previous decision tree (36). More specifically, the algorithm will design the first 

decision tree for a known outcome of interest, and then the next decision tree will be designed to 

identify individuals who were not correctly identified to experience the outcome of interest by the 

first tree (36) . Each additional tree aims to better identify high-risk individuals, the process 

continues iteratively (36).  K-fold cross-validation can be used to determine the optimal number of 

trees (36, 37). (Available software: Adaboost or gbm R packages). 

Multiple Measurements Support Vector Machine (MMSVM) 

The support vector machine has been used in conjunction with a data merging algorithm which aims 

make use of multiple measurements of a single predictor by prioritising a single measurement of a 

predictor in a specific time-window and maintaining summary statistics of all measurements taken 

in the observation window to prevent loss of information (38). Although this approach harnesses 

repeated measurements until the time of the outcome of interest to enhance classification, it is 

unclear how beneficial this approach would be for predicting future risk for new individuals who 

do not have any future longitudinal information. 

Support Vector Machine on Time-Series Model (SVMTSM) 

SVMs can be used in conjunction with autoregressive modelling techniques to capture time 

dependency and within-subject correlation (39). These two methods have worked together in 

Alzheimer’s disease, where the autoregressive model was used to predict future values of a covariate 

and then the SVM was applied to classify the trajectories for events and non-event subjects (39).  

Multiple Kernel Learning and Random-effects 

The standard SVM techniques have been further extended to incorporate correlations between 

different data sources and amongst repeated within-subject measurements (40). Subject-specific 

short-term and long-term random effects are modelled using kernel functions to acknowledge 

within-subject correlation and variability (40). This technique has been reported to conceptually be 

similar to semiparametric or nonparametric mixed-effects models depending on the choice of kernel, 

however the proposed method is said to provide greater flexibility through kernels and can easily 

be scaled up to high-dimensional data (40). The theory behind this extension of SVM has been 

described elsewhere (40). 

Hierarchical Neural Networks 

Walker and Musen, (41), introduced a hierarchical structure for an ANN model to exploit censored 

and time-varying information. The illustrations in this paper suggest that time-dependent covariates 

can be handled by the ANN framework (41). However, in addition to this application, the 



 

 

hierarchical ANN can be employed on a conditional survival framework where you construct a 

separate ANN at pre-defined time points for the remaining at-risk population and take into account 

the most recent subject-specific covariate information (42).  

Sequential Neural Networks 

A sequential multi-layered perception (SMLP) neural network with backpropagation learning, just 

like the RNN models, aims to harness the time-sensitivity of covariate information, but also the 

timing of event occurrence (43).  It was recently applied to capture the time-dependent nature of risk 

factors as predictors to the occurrence of diabetes (43). The details of how this algorithm works are 

explained elsewhere (43), but it has been reported to be similar to that of the TDCM approach in 

survival analysis yet the data used for modelling are the incremental changes rather than the 

covariate values. The structure of the SMLP learns from a small change in the input and produces a 

prediction according the change (43). Therefore, risk predictions can be updated over time whilst 

also accounting for predictions made by the algorithm at a previous time step.  

Unlike the RNN model, this method has been proposed specifically for a clinical application. On the 

other hand, a possible limitation of the proposed algorithm for EHR-style data is that it excludes any 

variables which have over 50% missing data (43).  

3.3.7.5 Matching algorithms 

Matching algorithms involve measuring the similarity of subject-level trajectories to historical 

trajectories from model development data. Conceptually, in how these approaches use longitudinal 

information, they map onto the TC framework. These algorithms include: a combination of 

mathematical modelling and an expert advice algorithm (36), multiple measurements case-based 

reasoning (37), and an interval mining algorithm (44, 45). More specifically, as an example, the 

multiple measurement case-based reasoning approach conceptually matches a new patient to an 

existing patient based on the frequency, timings and values of measurements (36, 37). 
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