Supplementary Materials for "Revealing the microbial assemblage structure in the human gut microbiome using latent Dirichlet allocation"

Shion Hosoda, Suguru Nishijima, Tsukasa Fukunaga, Masahira Hattori and Michiaki Hamada*

S1 Functional assemblage analysis

We investigated the human population-level differences in microbial assemblages and their compositions. We also estimated the functions of each assemblage by applying LDA to the functional profiles of identical samples as the genus data. These assemblages are referred to as "functional assemblages" in later analyses.

S1.1 Functional profile dataset and preprocessing methods

We normalized the functional profiles in the same manner as for the taxonomic profiles in the main text. We confirmed that the estimated parameters do not depend on the constants (Figure A1). After these preprocessing steps, the number of KEGG orthology types included in the dataset was 4,840.

S1.2 LDA for modeling the human gut functional profiles

The inference method for functional assemblages is almost the same as that for microbial assemblages (the details are described in the "Materials and methods" section in the main text), with differences in the following two points. First, we used the same number of functional assemblages with the microbial assemblages, *i.e.* K = 4. Second, we calculated the correlation score (the details are described in the next paragraph) for each trial and adopted the trial with the highest correlation score (see the next paragraph) among all 10 trials.

We defined the correlation score to quantify appropriateness of treating estimated functional assemblages as the relative abundance of functions of microbial assemblages. The correlation score is defined by

$$\max_{p} \sum_{k=1}^{4} C_{k,p_{k}},\tag{1}$$

where $C_{k,k'}$ is a Pearson's correlation coefficient between the k-th microbial assemblage and k'-th functional assemblage with respect to samples, p is a permutation of functional assemblage indices $\{1, 2, 3, 4\}$, and p_i is the *i*-th element of the permutation, p (that is, 1, 2, 3, or 4).

As a result of 10 trials, the third trial, which had the highest correlation score, was adopted (Figure A2). We named the functional assemblages based on the corresponding microbial assemblage with (ko) appended (that is, "B-assemblage(ko)," "P-assemblage(ko)," "R-assemblage(ko)," and "C-assemblage(ko)").

^{*}To whom correspondence should be addressed. Department of Electrical Engineering and Bioscience Faculty of Science and Engineering, Waseda University 55N-06-10, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan. Tel: +81 3 5286 3130; Fax: +81 3 5286 3130; Email: mhamada@waseda.jp

Figure A1: Scatter charts between estimated parameters of the constants (described in the main text) of 10,000 and 1,000/100,000. (a)(b) Parameters of the distributions of samples over functional assemblages. (a) 10,000 versus 1,000. (b) 10,000 versus 100,000. (c)(d) Parameters of the distributions of functional assemblage over functions. (c) 10,000 versus 1,000. (d) 10,000 versus 100,000. The x- and y-axes represent the estimated values of the parameters in the case of 1,000/100,000 and 10,000, respectively.

Figure A2: Pearson's correlation coefficients among microbial assemblages and functional assemblages for each trial (C in section S1). Both the x- and y-axes represent assemblages.

S2 Supplementary Figures and Table

Figure S1: Scatter charts for estimated parameters with respect to different constants. (a,b) Comparison of estimated parameters of distributions of samples over microbial assemblages (indicated as $\theta_{i,k}$ in the main text): (a) 10,000 versus 1,000 and (b) 10,000 versus 100,000. (c,d) Comparison of estimated parameters of distributions of of microbial assemblages over genera (indicated as $\phi_{k,j}$ in the main text): (c) 10,000 versus 1,000 and (d) 10,000 versus 100,000. The *x*- and *y*-axes represent the estimated values of parameters in the cases of 1,000/10,0000 and 10,000, respectively.

Figure S2: The relative abundance of four major genera ((a) *Bacteroides*, (b) *Prevotella*, (c) *Ruminococcus*, (d) *Blautia*) for each enterotype. The x- and y-axes represent the enterotype and relative abundance of the genus, respectively.

Figure S3: Relative abundance of four major genera ((a, e, i, m) *Bacteroides*, (b, f, j, n) *Prevotella*, (c, g, k, o) *Ruminococcus*, (d, h, l, p) *Blautia*) for each enterotype obtained by four trials with the (a-d) second, (e-h) third, (i-l) fourth, and (m-p) fifth highest silhouette coefficients. The x- and y-axes represent enterotype and relative abundance of the genus, respectively.

Figure S4: Standard deviations of the assemblage distributions for each enterotype. The x- and y-axes represent the microbial assemblages and enterotypes, respectively. Darker colors indicate higher standard deviations, and each number inside the partition indicates a different standard deviation. (a), (b), (c), and (d) indicate K-assemblage LDA models with K = 2, 3, 4, and 5, respectively.

Figure S5: Assemblage distributions of the other four trials with the second, third, fourth, and fifth highest VLB scores for each enterotype. Each row shows a distribution obtained by averaging the estimated assemblage distributions across individuals corresponding to each enterotype. The x- and y-axes represent the microbial assemblages and enterotypes, respectively. Darker colors indicate higher probabilities, and each number inside the partition indicates a different probability, where the sum of the values over each row is 1. (a), (b), (c), and (d) indicate the trials with the second, third, fourth, and fifth highest VLB scores, respectively.

Figure S6: The P(k|j) (Eq. 3 in the main text) of the genera with high entropy scores (> 1.0). The xand y-axes represent the genus and microbial assemblage, respectively.

Figure S7: Estimated microbial assemblage distribution for each individual. The x- and y-axes represent microbial assemblages and individual samples, respectively. Individuals are ordered by the probability of the dominant assemblage.

Figure S8: Estimated microbial assemblage distribution for each individual. The x- and y-axes represent microbial assemblages and individual samples, respectively. Individuals are segregated by the types obtained by the 4-type PAM method and sorted by the B-assemblage, P-assemblage, R-assemblage, and C-assemblage, respectively. The fourth type is referred to as the "C-type."

Austria	0.17	0.023	0.32	0.29		
Japan	0.12	0.075	0.16	0.11		0 30
Peru	0.01	0.2	0.11	0.22		0.50
Malawi	0.026	0.096	0.019	0.075		0.24
Venezuela	0.049	0.25	0.11	0.24		0.24
Russia	0.14	0.21	0.19	0.23		
France	0.16	0.092	0.22	0.2		0.18
Sweden	0.068	0.096	0.13	0.13		
China	0.26	0.2	0.12	0.19		0.12
United_States	0.35	0.21	0.19	0.26		
Denmark	0.2	0.18	0.033	0.19		0.06
Spain	0.18	0.16	0.17	0.2		
	B-assemblage	P-assemblage Assem	nplage	C-assemblage	-	

Figure S9: Standard deviations of the assemblage distributions for each country. The x- and y-axes represent the microbial assemblages and countries, respectively. Darker colors indicate higher standard deviations, and each number inside the partition indicates a different standard deviation. (a), (b), (c), and (d) indicate K-assemblage LDA models with K = 2, 3, 4, and 5, respectively.

Figure S10: Pearson's correlation coefficients among microbial and functional assemblages (the same figure as Fig. A2(3)). Both the x- and y-axes represent assemblages.

Figure S11: Relative abundance of functional categories for each assemblage. The x- and y-axes represent the function category and relative abundance, respectively.

Figure S12: Relative abundance of genera in each individual. The x- and y-axes represent the genus and individuals, respectively. Individuals are divided by the enterotype and sorted by *Bacteroides*, *Prevotella*, and *Blautia*. Genera are divided by the assemblage in which they mainly appear and are sorted by the abundance of each genus. Each genus was regarded as mainly appearing in the assemblage of the highest P(k|j), which is a probability of the k-th assemblage given the j-th genus (Eq. 3 in the main text).

Figure S13: The Spearman's correlation coefficients among the 20 genera that are predominant in each enterotype. Both the x- and y-axes represent genera, which are divided and sorted similarly as in Fig. S12. Plus and minus signs indicate significant positive and negative correlations, respectively. Significance was determined at p < 0.01 (two-sided test, after Benjamini–Hochberg correction).

Figure S14: P(k|j) of *Bacteroides*, *Prevotella*, *Bifidobacterium*, and the genera that have high Spearman's correlation coefficients with the other assemblage genera in Fig. S13. The x- and y-axes represent the genus and P(k|j), respectively.

	Austria	0.056	0.1	0.058	0.054	0.12
	Japan	0.023	0.065	0.015	0.057	
	Peru	0.11	0.056	0.084	0.1	0.10
	Malawi	0.085	0.083	0.061	0.05	
>	Venezuela	0.086	0.044	0.071	0.069	0.08
ntr	Russia	0.11	0.13	0.056	0.041	0.00
Sou	France	0.076	0.098	0.061	0.072	
0	Sweden	0.1	0.099	0.087	0.079	0.06
	China	0.058	0.094	0.032	0.051	
	United_States	0.04	0.047	0.041	0.049	0.04
	Denmark	0.12	0.075	0.091	0.048	
	Spain	0.089	0.095	0.057	0.042	0.02
		Clostridium	Eubacterium	Unclassified Firmicutes	Faecalibacterium	
Genus						

Figure S15: Average relative abundance of *Clostridium*, *Eubacterium*, unclassified *Firmicutes*, and *Fae-calibacterium* for each country. The x- and y-axes represent the genus and country of the individual, respectively.

Figure S16: Relationship between C-assemblage probability and (a) age and (b) BMI metadata. The x-and y-axes represent the metadata and C-assemblage probability, respectively.

Genus	entropy
Turicibacter	1 260681
Phascolarctobacterium	1.200001 1 245466
Parvimonas	1 220400
Unclassified Clostridiales	1 0091/0
Conrabacillus	1 088/11/
Lachnoclostridium	1 082888
Klebsiella	1.061892
Cronobacter	1.056325
Unclassified Pentostrentococcaceae	1.044608
Proteus	1.042833
Citrobacter	1.037434
Tyzzerella	1.021686
Veillonella	0.999699
Holdemania	0.983926
Yersinia	0.980842
Bilophila	0.951916
Fae calibacterium	0.937553
Unclassified Lachnospiraceae	0.933686
Paraprevotella	0.926816
Enterobacter	0.924527
Unclassified Bacteria	0.906336
Subdoligranulum	0.893402
Pseudomonas	0.891144
Peptoclostridium	0.880690
Flavoni fractor	0.878429
Eubacterium	0.857729
Lachnospira	0.840097
Dorea	0.822750
Unclassified Erysipelotrichaceae	0.816711
Escherichia	0.814104
Megasphaera	0.812753
Roseburia	0.788690
Erysipelatoclostridium	0.784843
Acidaminococcus	0.773040
Dielma	0.756564
Intestinibacter	0.744818
	0.736164
	0.725791
Scaraovia Oloomollo	0.712202
	0.713303
r toviaetileta Stomatobaeulum	0.709073
Odorihaetor	0.109080
Unclassified Clostridiales Family VIII Incenta	0.704000
Pentostrentococcus	0.703108
r opiosi opiococcus Kandleria	0.091401
Marvinhruantia	0.090000 0.695373
Cloacibacillus	0.695198
Sharpea	0.695112
Atopobium	0.694374
Barnesiella	0.693038
Catenibacterium	0.687024
Tannerella	0.686389
Streptococcus	0.685115
Oenococcus	0.684101
Unclassified Bacteroidales	0.683936

Table S1: The entropy score of ${\cal P}(k|j)$ for all genera used.

Genus	entropy
Dialister	0.683460
Azospirillum	0.680177
Weissella	0.677471
Ruminococcus	0.673173
Megamonas	0.669763
Leuconostoc	0.668794
Unclassified Burkholderiales	0.665163
Methanosphaera	0.654763
Blautia	0.646975
Solobacterium	0.644240
Enterococcus	0.644030
Akkermansia	0.631433
Alistipes	0.624308
Actinomyces	0.622316
Unclassified Ruminococcaceae	0.620387
Peptoniphilus	0.616613
Senegalimassilia	0.595117
Pseudoflavonifractor	0.594075
Unclassified Proteobacteria	0.591897
Haemophilus	0.588196
Desulfovibrio	0.585395
Alloprevotella	0.582315
Actinobaculum	0.579283
Propionibacterium	0.578085
Oxalobacter	0.576018
Mitsuokella	0.571258
Coprococcus	0.562809
Fusobacterium	0.561115
Adlercreutzia	0.546762
Butyricicoccus	0.543292
Anaerostipes	0.539088
Thauera	0.535747
Pedobacter	0.535627
Luteimonas	0.535625
Allobaculum	0.535624
Sphaerochaeta	0.535624
Kallipuqa	0.535624
Lamprocustis	0.535565
Sphingobacterium	0.535565
Sphingopyxis	0.535565
Unclassified Aminicenantes	0.535499
Brevibacillus	0.535499
Campylobacter	0.521678
Methanobrevibacter	0.520127
Cruptobacterium	0.513993
Ruminiclostridium	0.510680
Eagerthella	0.509646
Lactococcus	0.504261
Buturicimonas	0.491595
Unclassified Bacteroidetes	0 474846
Shewanella	0 459807
Pornhuromonas	0 434194
Parabacteroides	0.404124
Inhusanella	0.421211
Commohactorium	0.420004
Coryneoucierrum	0.420473

Table S1: The entropy score of P(k|j) for all genera used. – Continued from previous page

	0.00000
Brachyspira	0.393297
Gemella	0.377228
Gordonibacter	0.369317
Lactobacillus	0.347828
Unclassified Xanthomonadaceae	0.339638
Dickeya	0.339637
Kosakonia	0.339551
Moraxella	0.339550
Arthrospira	0.339549
Anaeroglobus	0.339549
	0.339549
Shinella	0.33950
Stenotrophomonas	0.339459
Allofustis	0.339458
Lelliottia	0.339458
Bacıllus įbacteriumį;	0.336655
Hafnia	0.325478
Granulicatella	0.298182
Collinsella	0.294820
Actinobacillus	0.253157
Mobiluncus	0.25315
Cupriavidus	0.253089
Unclassified Propionibacteriaceae	0.253089
Shuttleworthia	0.25305
Ethanoligenens	0.25305
	0.253018
Shigella	0.252294
	0.251584
Rikenella	0.240003
	0.239172
	0.235800
	0.216568
	0.203630
Aeromicrobium	0.203630
Tetrasphaera	0.203574
Jantninobacterium	0.203572
Dysgonomonas	0.203572
Microlunatus Dente e	0.203540
Pantoea Cum and istan	0.203540
Synergistes	0.203514
Unclassified Firmicutes	0.17477
	0.17124
	0.17117
Bullerara	0.17117
Unclassifiea Oxalobacteraceae	0.1(11)
	0.1(1144
	0.16991
A prostrum que	0.169097
Anaerotruncus	0.16892
Sirepiomyces Theorem	0.15/83
Inermus Trai en enclue	0.148239
Irueperella Communication	0.148238
Serratia	0.148238
11	

Table S1: The entropy score of P(k|j) for all genera used. – Continued from previous page

Genus	entropy
Parascardovia	0.148238
Paenibacillus	0.136984
Riemerella	0.131086
Sphingomonas	0.131048
Candidatus Arthromitus	0.131048
Negativicoccus	0.131030
Bacteroides	0.122743
Candidatus Stoquefichus	0.117656
Aggregatibacter	0.112499
Pseudoalteromonas	0.106937
Unclassified Betaproteobacteria	0.106937
Robinsoniella	0.106905
Filifactor	0.106891
	0.106891
Kocuria	0.098099
Unclassified Alphaproteobacteria	0.098099
Georgenia	0.098099
Mogibacterium	0.098071
Paracoccus	0.098056
Morganella D. H.:	0.090671
Kotnia Na li il	0.089105
Nocardioides	0.084365
Staphylococcus	0.082676
	0.078953
Anaerofustis	0.078953
Slackia	0.078174
Pasteurella	0.070096
Aerococcus	0.070047
Anaerococcus	0.066380
Anaerosalibacter	0.057431
Unclassifiea Canaidatus Saccharibacteria	0.057431
Garanerella	0.052776
Plesiomonas	0.050727
Autinomonas Elizabeth himei e	0.048869
Luzaoethkingia	0.048838
	0.047110
Selenomonas Orite et enium	0.046316
Orioacterium Receietee	0.044003
Deggiulou Un classified Dactornidance	0.041308
Anidowaran	0.040074
Actuovotur Difidahaatamium	0.035891
Dijiao0acterium Miemenenene	0.035527
Micrococcus Catamalla	0.029757
	0.029757
Aeromonas Leclencia	0.028547
Lectercia Vlassiana	0.026936
nuyvera Domboldomia	0.026434
DUTKHOIAETIA Caabaaillua	0.025968
Alloogardonia	0.025900
Anoscuruoviu Dhadaaaaaa	0.025499
RHOUOCOCCUS Drewstalla	0.025052
r revotella Miere he esterieure	0.024904
	0.024628
	0.023983
Varibaculum	0.023434

Table S1: The entropy score of P(k|j) for all genera used. – Continued from previous page

Genus	entropy
Listeria	0.022350
Alcanivorax	0.022160
Fikenella	0.020773
Oscillibacter	0.020362
Enterorhabdus	0.018686
Helicobacter	0.017187
Bifidobacterium	0.013555
Methylobacterium	0.012762
Leptotrichia	0.012559
Puramidobacter	0.010146
Lysinibacillus	0.009544
Kingella	0.008453
Bordetella	0.007775
Cardiobacterium	0.007596
Methanomassilii coccus	0.006476
Lautropia	0.005972
Succinatimonas	0.004608
Spiroplasma	0.004588
Acidiphilium	0.003029
Corallococcus	0.002747
Achromobacter	0.002647
Capnocytophaga	0.002549
Cetobacterium	0.002347
Butyrivibrio	0.002281
Coraliomargarita	0.002105
Enorma	0.001869
Acholeplasma	0.000901
Pediococcus	0.000880
Neisseria	0.000365
Treponema	0.000171
Acetobacter	0.000142

Table S1: The entropy score of P(k|j) for all genera used. – Continued from previous page