Additional file 1

Species of cyanobacteria	Extracellular mannitol concentration (mM)	Cultivation time (days)	Final OD ₇₃₀	Synthesis pathway	Reference
<i>Synechococcus</i> sp. PCC7002	4.5	12	13	MtlD and M1p	(1)
<i>Synechococcus</i> sp. PCC7002	~0.55	52	~22	M1PDH/M1Pase*	(2)
<i>Synechocystis</i> sp. PCC6803	0.021	7	7.5	MtlD and M1p	This study
[*] English markets					

Table S1. Comparison of mannitol production in cyanobacteria

*, Fusion protein

Plasmid and strains	Description	Reference
pFL-AN	BioBrick "T" vector with AvrII and NheI on each side	(3)
pFL-AN1	pFL-AN derivate, Amp ^r Km ^r , containing <i>sll0045(sps)</i> gene upstream homologous region, selection cassette (<i>mazF</i>) and downstream homologous region	In this work
pFL-AN2	pFL-AN derivate, Amp ^r , containing <i>sll0045(sps)</i> gene upstream and downstream homologous regions	In this work
pFL-AN3	pFL-AN derivate, Amp ^r Km ^r , containing <i>sll1566 (ggpS)</i> gene upstream homologous region, selection cassette (<i>mazF</i>) and downstream homologous region	In this work
pFL-AN4	pFL-AN derivate, Amp ^r , containing <i>sll1566</i> (<i>ggpS</i>) gene upstream and downstream homologous regions	In this work
pHKH015	Integration vector on <i>slr0168</i> containing <i>ldh</i> (from <i>B. subtilis</i>) and <i>sth</i> (from <i>P. aeruginosa</i>)	In this work
pHKHmtlD	plasmid containing <i>mtlD</i>	In this work
pUC57m1p	plasmid containing <i>m1p</i>	In this work
WT	Synechocystis sp. PCC6803 wild type	(4)
∆GGPS	Synechocystis sp. PCC6803 ggpS gene knock out	In this work
SPS	Synechocystis sp. PCC6803 sps gene knock out	In this work
ΔCS	Synechocystis sp. PCC6803 ggpS and sps double gene knock out mutant	In this work
WT_M	Mannitol cassette under Ptrc1 promoter on the WT background	In this work
$\Delta GGPS_M$	Mannitol cassette under Ptrc1 promoter on the Δ GGPS background	In this work
SPS_M	Mannitol cassette under Ptrc1 promoter on the SPS background	In this work
ΔCS_M	Mannitol cassette under Ptrc1 promoter on the ΔCS background	In this work

Table S2. Plasmids and strains used in this study

Mutation type	Position (start	Translation analysis	Enzyme	Cultivation condition
	from ATG)			
Single nucleotide	480	Translation 161 a.a (220 extra	Mannitol dehydrogenase	WT_M under no salt
insertion (SNI)		codons after stop)	(C-terminal domain)	
Point mutation (PM)	260	a.a 87 (A to V)	Mannitol dehydrogenase	WT_M under no salt
			(Rossmann domain)	
Point mutation (PM)	775	a.a 259 (M to L)	Mannitol dehydrogenase	WT_M under no salt
			(C-terminal domain)	
Point mutation (PM)	608	a.a 203 (A to D)	Mannitol dehydrogenase	WT_M under no salt
			(C-terminal domain)	
Single nucleotide	1016	Translation 339 a.a (42 extra	Mannitol dehydrogenase	WT_M under no salt
deletion (SND)		codons after stop)	(C-terminal domain)	
Point mutation (PM)	-40		Promoter	WT_M under 420mM
				salt
Single nucleotide	1016	Translation 339 a.a (42 extra	Mannitol dehydrogenase	WT_M under 420mM
deletion (SND)		codons after stop)	(C-terminal domain)	salt
Point mutation (PM)	1100	a.a 367 (T to S)	Mannitol dehydrogenase	WT_M under 420mM
			(C-terminal domain)	salt
Single nucleotide	103	Translation 34 a.a (347 extra	Mannitol dehydrogenase	WT_M under 420mM
deletion (SND)		codons after stop)	(Rossmann domain)	salt
Point mutation (PM)	506	a.a 169 (I to N)	Mannitol dehydrogenase	WT_M under 420mM
			(C-terminal domain)	salt
Point mutation (PM)	161	a.a 54 (N to T)	Mannitol dehydrogenase	SG_M under no salt
			(Rossmann domain)	
Point mutation (PM)	405	a.a 135 (I to M)	Mannitol dehydrogenase	SG_M under no salt
			(Linker region)	
Point mutation (PM)	941	a.a 314 (S to T)	Mannitol dehydrogenase	SG_M under no salt
			(C-terminal domain)	
Point mutation (PM)	934	a.a 312 (G to L)	Mannitol dehydrogenase	SG_M under no salt
			(C-terminal domain)	

Table S3. Summary of all the mutations in the mannitol cassette, identified after prolonged cultivation in the Multi-Cultivator.

Primer name	Sequence	Purpose	
Hom1SPS_F	5'-ACATCCCCTCGCTTAACTCC-3'	Amplification of homologous region	
XbaIHom1SPS_R	5'-	Amplification of homologous region	
	GIAAIIIGIAAAACIItetagaCCAGCCGAAAICAICGA GAAC-3'	restriction site at the 3'	
XbaIHom2SPS_F	5'- GATGATTTCGGCTGGtctagaAAGTTTTACAAATTACTA	Amplification of homologous region downstream the <i>sps</i> gene and addition of an	
Hom2SPS_R	T-3' 5'-TGGACCTATATCGCCGCTTT-3'	Xbal restriction site at the 5' Amplification of homologous region	
- Hom1GGPS_F	5'-TCCTTTCCCAACGAAACAAG-3'	downstream the sps gene Amplification of homologous region	
XbaIHom1GGPS_R	5'-	upstream the <i>ggps</i> gene Amplification of homologous region	
	CTGCAGTTTCTAGACCATATGAAAATCAGCGGTCTC CAAAATC-3'	upstream the <i>ggps</i> gene and addition of an XbaI restriction site at the 3'	
XbaIHom2GGPS_F	5'- CATGGTCTAGAAACTGCAGGCGATCGCCAATGCCAG	Amplification of homologous region	
	TTG-3'	Xbal restriction site at the $5'$	
Hom2GGPS_K	5-TATCCACAAACGCTTCCACA-3	downstream the <i>ggps</i> gene	
CheckSPS_F	5'-TTGAAGGAGTTTATGGCCCC-3'	Check deletion of <i>sps</i> gene	
CheckSPS_R	5'-TAACTCAGAGATTGCGGCCA-3'	Check deletion of sps gene	
CheckGGPS_F	5'-AACGTACTAAAATGCCCCGG-3'	Check deletion of ggps gene	
CheckGGPS_R	5'-GGCGACAGGGTTTGAAACAA-3'	Check deletion of ggps gene	
Ptrc1Hom1slr0168_	5'-TCTCCACGCTGAATTAGAACA-3'	Amplification of homologous region	
F		Ptrc1	
Ptrc1Hom1slr0168_	5'- ATGTCATTTCTCCTCTTTAATG -3'	Amplification of homologous region	
R		upstream the <i>slr0168</i> gene and promoter <i>Ptrc</i> 1	
MtlD_F	5'-	Amplification of optimized <i>mtlD</i> and fused	
	CATTAAAGAGGAGAAATGACATATGAAAGCTTTGCA CTTTGG -3'	with promoter <i>Ptrc</i> 1	
MtlD_R	5'- ATGTCATTTCTCCTCTTTAATGCTAGCTTATTATTGCA	Amplification of optimized <i>mtlD</i> and fused with optimized <i>m1p</i>	
M1n F	TGGCCTTATAGGCCGT -3' 5'-	Amplification of optimized <i>m ln</i> and fused	
wiip_i	ACGGCCTATAAGGCCATGCAATAATAAGCTAGCATT	with optimized <i>mtD</i>	
M1p_R	5'-CGGTTTCGCGTTGGGAATCA-3'	Amplification of optimized <i>m1p</i>	
Kan_F	5'-	Amplification of kanamycin resistance gene	
	ACTGGCT-3'	and fused with optimized <i>m1p</i>	
Kan_R	5'- CGCTGAGGTCTGCCTCGTGAAG-3'	Amplification of kanamycin resistance gene	
Hom2slr0168_F	5'- TTCACGAGGCAGACCTCAGCGGTCGACCTCGAGAGA	Amplification of homologous region downstream the <i>slr0168</i> gene and fused with	
Hom2s1r0168 R	CCAAGCCC-3'	kanamycin resistance gene	
Checkslr0168 F	5'-TGTCGCCGCTAAGTTAGA-3'	downstream the <i>slr0168</i> gene Check insertion/segregation at the <i>slr0168</i> site	
Chashalr01(0, D		Check insertion/segregation at the 300700 site	
Unecksir0168_R	5 -UTUTUUUTAUTAAAUTUUU-3	Check insertion/segregation at the <i>slr0168</i> site	

Table S4 Primers used in this study

A representative set of growth curves of the strain WT, Δ GGPS and Δ CS in growth medium with 200 mM salt added, in a 96 well plate. Each color represents one replicate. The data with the grey background were extracted for growth rate calculation by fitting a linear function through the natural logarithm of the OD₇₃₀ (indicated as the inset of each plot). The slope of the linear function was computed and designated as the growth rate.

Reference:

- 1. Jacobsen JH, Frigaard N-U. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng. 2014 Jan 1;21:60–70.
- 2. Madsen MA, Semerdzhiev S, Amtmann A, Tonon T. Engineering Mannitol Biosynthesis in *Escherichia coli* and *Synechococcus* sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synth Biol. 2018;7(12):2833–40.
- 3. Du W, Jongbloets JA, Guillaume M, van de Putte B, Battaglino B, Hellingwerf KJ, et al. Exploiting Day- and Night-Time Metabolism of *Synechocystis* sp. PCC 6803 for Fitness-Coupled Fumarate Production around the Clock. ACS Synth Biol. 2019 Oct 18;8(10):2263–9.
- 4. Ng W-O, Grossman AR, Bhaya D. Multiple Light Inputs Control Phototaxis in *Synechocystis* sp. Strain PCC6803. J Bacteriol. 2003 Mar 1;185(5):1599 LP 1607.