
Artifact for Euro-Par 2020 paper Accelerating
Nested Data Parallelism: Preserving Regularity

This is the source code we used to do the experiments of Section 5 (Evaluation).
More specifically you can reproduce the four figures of Figure 3 with this code.
The repository can be found here it can be cloned with

git clone --single-branch -b artifact \
https://github.com/sakehl/FourierTests.git

NOTE You do not have to clone this repository for running every-
thing, it is also included in the docker image. But if you want to
inspect the code we use, this repo is more usefull than a docker im-
age.

Getting started guide
Requirements

• A linux machine (only tested with Ubuntu 18.04)
• Nvidia GPU, atleast 11GB of memory is needed to run all experiments.

(Less memory is possible, but some experiments will run out of memory)
• Atleast nvidia driver version >= 418.39 must be installed.
• CUDA toolkit is not needed, comes with the docker.

Quick install via Docker

Install the following

• Docker
• Nvidia’s Docker runtime

We need a folder on the host, so you can easily see the produced (intermedi-
ate) results. In the folder where you are going to run the docker image and
experiments, make a data folder. E.g.

mkdir ~/euro-par-20-accelerate
cd ~/euro-par-20-accelerate
mkdir data

Now do the following

sudo docker run --gpus all -it --privileged --mount \
type=bind,source="$(pwd)"/data,target=/root/FourierTests/data \
lvandenhaak/accelerate-euro-par-20

And see if everything is working.

1

https://github.com/sakehl/FourierTests/tree/artifact
https://docs.docker.com/install/
https://github.com/NVIDIA/nvidia-docker#quickstart

Manual install

The manual installation can take a long time, we will specify it here for ubuntu
(version 18.04). It follows roughly the same instructions as the Dockerfile, if
something is unclear, look at the commands we used there

1. Install Python3.

2. Install CUDA 10.1 via nvidia, the runfile is probably the easiest.
(Other CUDA versions might work, but you need to alter the line -
cuda-0.10.1.0 in stack_git.yaml to the appropiate CUDA version.)

3. Install libfftw3-dev and gnuplot, we depend on it:

sudo apt-get install libfftw3-dev libtinfo-dev libgmp-dev gnuplot

4. Install Haskell Stack, follow the install instructions or use these commands:

curl -sSL https://get.haskellstack.org/ | sh

5. Install LLVM 9, follow the instructions here on how to install it, or use
these commands

wget -O - http://apt.llvm.org/llvm-snapshot.gpg.key | apt-key add - \
&& sudo add-apt-repository \

"deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic main" \
&& sudo apt-get update \
&& sudo apt-get install -y llvm-9-dev

6. Set the right environment variables, preferable add the following lines to
your ~/.bashrc. If CUDA is not installed in /usr/local/cuda/ please
adjust accordingly.

LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/nvvm/lib64:$LD_LIBRARY_PATH"
LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/nvvm/lib64:$LIBRARY_PATH"
CPATH="/usr/local/cuda/include:$CPATH"

7. Newer GHC versions have problems with Ubuntu and libffi, to fix it we
must link libffi.so.6 to libffi.so.7, run

sudo ln /usr/lib/x86_64-linux-gnu/libffi.so.6 \
/usr/lib/x86_64-linux-gnu/libffi.so.7

8. (Maybe needed) There can problems with lb.bfd to link, run this as a fix

sudo update-alternatives --install "/usr/bin/ld" "ld" "/usr/bin/ld.gold" 20
sudo update-alternatives --install "/usr/bin/ld" "ld" "/usr/bin/ld.bfd" 10

9. Build the Accelerate code. In this directory, run

stack build

10. Install Futhark dependency’s

sudo apt install -y libtinfo-dev libgmp-dev

2

https://developer.nvidia.com/cuda-10.1-download-archive-base
https://docs.haskellstack.org/en/stable/README/
https://apt.llvm.org/

11. Install Futhark version 0.13.2

wget https://futhark-lang.org/releases/futhark-0.13.2-linux-x86_64.tar.xz \
&& tar -xf futhark-0.13.2-linux-x86_64.tar.xz

cd futhark-0.13.2-linux-x86_64
make install

Step-by step instruction on how to reproduce the results
NOTE: If you want to shorten the experiments, read the next section
first. Otherwise the runs might take up to 3-5 hours. The original
experiments were conducted on a GeForce RTX 2080Ti (compute capability 7.0,
68 multiprocessors = 4352 cores at 1.65GHz, 11GB RAM) backed on by 16-core
Threadripper 2950X (1.9GHz, 64GB RAM).

1. Start the docker image (If using docker file, otherwise skip)

sudo docker run --gpus all -it --privileged --mount \
type=bind,source="$(pwd)"/data,target=/root/FourierTests/data \
lvandenhaak/accelerate-euro-par-20

2. To reproduce the quicksort results do (inside the docker bash)

./make_quicksort_dat.sh

Note this can take up a long time, on our machine about 2 to 3
hours. Mostly busy compiling Accelerate’s Irregular version.

3. Inspect the results in the data folder on your host. quicksort-100.pdf,
quicksort-1000.pdf and quicksort-10000.pdf should be created and
look similar to figure 3 of the paper. The files quicksort-100.dat contain
the raw data points. The files result_quicksort_Regular_100_1.csv
contain the output we get from the nvidia profiler (nvprof). They can be
compared with the exact paper results, which can be found in ResultsPaper.

4. To reproduce the fourier results do (inside the docker bash)

./make_fourier_dat.sh

Note also takes a long time, about 1 to 2 hours on our machine

5. Inspect the results in the data folder on your host. fourier32x32.pdf,
quicksort-1000.pdf and quicksort-10000.pdf should be created and
look similar to figure 3 of the paper.

Shortening the runs

We’ve provided some arguments to the above bash scripts, to run shorter versions,
although not all figures will be produced in that case. This can be run with

./make_quicksort_dat.sh --short

./make_fourier_dat.sh --short

3

README.md#shortening-the-runs
https://github.com/sakehl/FourierTests/tree/artifact/ResultsPaper

Run specific benchmark again

To run a specific benchmark again, you can give some other arguments, e.g.

./make_quicksort_dat.sh --regular -m 100 -n 1

./make_fourier_dat.sh --futhark -n 1

./make_fourier_dat.sh --irregular --no-input

For quicksort, valid values for m are 100, 1000 and 1000 (the three differunt
subgraphs). Valid values for n are 1, 100, 1000, 2000, 5000, 10000. Valid versions
(as indicated by the legend of Figure 3) are –regular (Accelerate, Regular)
–irregular (Accelerate), –futhark (Futhark).

For fourier, valid values for n are 1, 100, 1000, 5000, 10000, 20000. Valid versions
(as indicated by the legend of Figure 3) are –regular (Accelerate, Regular) –
irregular (Accelerate), –futhark (Futhark), –cufft (cuFFT) and –normal (Normal).

Add the option --no-input to not remake the input again.

Out of memory problems

Unfortunately, processes that use the maximum ammount of memory of the GPU
(or nearly so) can stall a long time. You can just cancel a specific benchmark
with [ctrl] + c. It will give a warning that it isn’t included in the .dat file,
but it should still process fine.

Structure of code
• First of all, you can see the Dockerfile that was used to build the docker

image you are using. It uses CUDA 10.1, LLVM 9, installs the code in the
repository via stack, and get futhark version 0.13.2 from the futhark site.
It also sets some environment variables.

• app/Main.hs contains the benchmarks of the Accelerate versions. Basically,
it just runs them 10 times, given the right arguments.

• src/Quicksort.hs contains the code used for quicksort (quicksort) in
Accelerate. This is the normal non-nested version. In src/QuickSortTest.hs
the nested version (works on list of 1d arrays) can be found, which is again
called from Main.

• src/FFTAdhoc.hs contains the code used for fourier in Accelerate (fft2D).
This is the normal non-nested version. In src/FourierTest.hs the nested
version (works on list of 2d arrays) can be found, which is again called
from Main. The normal (src/FourierTest.hs) version can also be found
there. The cuFFT version can be found here, a fork of the accelerate-fft
package.

• Futhark/fft-lib.fut contains the Futhark fourier version we are using, the
source code of the fft can be found here from the futhark github. Which
we copied here in our repository.

4

https://github.com/sakehl/FourierTests/blob/artifact/app/Main.hs
https://github.com/sakehl/FourierTests/blob/artifact/src/QuickSort.hs
https://github.com/sakehl/FourierTests/blob/artifact/src/QuickSortTest.hs#L33
https://github.com/sakehl/FourierTests/blob/artifact/src/FFTAdhoc.hs#L59
https://github.com/sakehl/FourierTests/blob/artifact/src/FourierTest.hs#L36
https://github.com/sakehl/FourierTests/blob/artifact/src/FourierTest.hs#L45
https://github.com/sakehl/accelerate-fft/blob/1.1.0.0-Seq//Data/Array/Accelerate/Math/FFT/LLVM/PTX.hs#L85
https://github.com/sakehl/FourierTests/blob/artifact/Futhark/fft-lib.fut#L52
https://github.com/diku-dk/fft/blob/377d089ad88a8d37b23a6e8a1056ba63b160c830/lib/github.com/diku-dk/fft/stockham-radix-2.fut
https://github.com/sakehl/FourierTests/blob/artifact/Futhark/lib/github.com/diku-dk/fft/stockham-radix-2.fut

• Futhark/quicksort.fut contains the Futhark quicksort version we are using,
it is the same algorithm that Accelerate uses, actually we just ported the
Accelerate version to Futhark.

• input_gen.py generates random intergers in lists, and outputs them to the
data directory.

• make_fourier_dat.sh is a bash script that does all the fourier experiments.

• Both accelerate and futhark are profiled with nvprof. We use these
options --csv (output as csv) -f (overwrite output files) -u ms (mea-
sure in ms) --trace gpu (only measure gpu activity) --log-file
data/result_fourier_$v_$n.csv (log file output) for Accelerate, for
Futhark we add --profile-child-processes since it spawns child
processes which do the actual compitations. Note this profiling is thus
only profiling the executing times of the kernels and memory transfer
overheads (--gpu option), as indicated in the paper, this is not the actual
time the program is running, since there is idle time in between kernels.
Also note, we don’t measure the compile time, which is during runtime for
Accelerate, but is not GPU activity.

• Note that we use Futhark with futhark bench -r 9, this is actually
executes the Futhark program 10 times, the bench option always does one
warm-up run, that is profiled.

• You can see that we add --exclude=$n to the futhark version, this was
the easiest way to select a certain benchmark (see the tags in Futhark/fft-
lib.fut)

• We call input_gen.py from the bash script, to generate the input files

• All the profiling is stored in files with names data/result_fourier_$v_$n.csv
where $v is the version and $n is the n value (which is plotted in the
x-axis of the figures)

• We call process_csv.py which processes all the outputed csv files, into on
data/fourier32x32.dat

• We call gnuplot with fourier32x32.gnuplot as argument, which produces
the output file data/fourier32x32.pdf

• make_quicksort_dat.sh does the same things, but for quick-
sort. Eventually it produces the files data/quicksort-100.pdf,
data/quicksort-1000.pdf and data/quicksort-10000.pdf

• The accelerate compiler versions can be found in the file stack.yaml. And
specifaclly this Accelerate version. The static analyses from section 3 of
the paper can be found here, the part that turns of the analyses can be
found here. This is interacted on with the function setforceIrreg :: IO
(), which is used in app/Main.hs on line 41.

5

https://github.com/sakehl/FourierTests/blob/artifact/Futhark/quicksort.fut
https://github.com/sakehl/FourierTests/blob/artifact/input_gen.py
https://github.com/sakehl/FourierTests/blob/artifact/make_fourier_dat.sh
https://github.com/sakehl/FourierTests/blob/artifact/Futhark/fft-lib.fut
https://github.com/sakehl/FourierTests/blob/artifact/Futhark/fft-lib.fut
https://github.com/sakehl/FourierTests/blob/artifact/input_gen.py
https://github.com/sakehl/FourierTests/blob/artifact/process_csv.py
https://github.com/sakehl/FourierTests/blob/artifact/process_csv.py
https://github.com/sakehl/FourierTests/blob/artifact/make_quicksort_dat.sh
https://github.com/sakehl/accelerate/tree/feature/sequences
https://github.com/sakehl/accelerate/blob/feature/sequences/Data/Array/Accelerate/Trafo/Shape.hs
https://github.com/sakehl/accelerate/blob/feature/sequences/Data/Array/Accelerate/Trafo/Vectorise.hs#L890
https://github.com/sakehl/FourierTests/blob/artifact/app/Main.hs#L41

	Artifact for Euro-Par 2020 paper Accelerating Nested Data Parallelism: Preserving Regularity
	Getting started guide
	Requirements
	Quick install via Docker
	Manual install

	Step-by step instruction on how to reproduce the results
	Shortening the runs
	Run specific benchmark again
	Out of memory problems

	Structure of code

