
Saebi et al. Page 24 of 27

Supplementary materials
Algorithm. We present the parameter-free and scalable BuildHON+ algorithm for

constructing HON. The rule extraction step is given in Algorithm 1, and the network

wiring step remains the same as that of HON in [2]. While BuildHON+ algorithm

is parameter-free, we provide MaxOrder and MinSupport as optional parameters.

We also provide the optional ThresholdMultiplier parameter (the default value 1

is consistent with the HON algorithm), for users to control how aggressive the

algorithm prevents higher-order dependencies from being generated. Setting the

parameter larger than 1 results in less higher-order dependencies, smaller than 1

for more higher-order dependencies.

Saebi et al. Page 25 of 27

Algorithm 1 BuildHON+ rule extraction algorithm. Given the raw sequential data T ,

extracts arbitrarily high orders of dependencies, and output the dependency rules R.

Optional parameters include MaxOrder, MinSupport, and ThresholdMultiplier
1: define global C as nested counter
2: define global D,R as nested dictionary
3: define global SourceToExtSource, StartingPoints as dictionary
4:

5: function ExtractRules(T , [MaxOrder, MinSupport, ThresholdMultiplier = 1])
6: global MaxOrder, MinSupport, Aggresiveness

7: BuildFirstOrderObservations(T)
8: BuildFirstOrderDistributions(T)
9: GenerateAllRules(MaxOrder, T)

10:

11: function BuildFirstOrderObservations(T)
12: for t in T do
13: for (Source, Target) in t do
14: C[Source][Target] += 1
15: IC.add(Source)

16:

17: function BuildFirstOrderDistributions(T)
18: for Source in C do
19: for Target in C[Source] do
20: if C[Source][Target] < MinSupport then
21: C[Source][Target] = 0

22: for Target in C[Source] do
23: if thenC[Source][Target] > 0
24: D[Source][Target] = C[Source][Target]/(

P
C[Source][⇤])

25:

26: function GenerateAllRules(MaxOrder, T)
27: for Source in D do
28: AddToRules(Source)
29: ExtendRule(Source, Source, 1, T)

30:

31: function KLDThreshold(NewOrder,ExtSource)
32: return ThresholdMultiplier ⇥NewOrder/log2(1 +

P
C[ExtSource][⇤])

33: function ExtendRule(V alid, Curr, order, T)
34: if Order MaxOrder then
35: AddToRules(Source)
36: else
37: Distr = D[V alid]
38: if �log2(min(Distr[⇤].vals)) < KLDThreshold(order + 1), Curr then
39: AddToRules(V alid)
40: else
41: NewOrder = order + 1
42: Extended = ExtendSource(Curr)
43: if Extended = ; then
44: AddToRules(V alid)
45: else
46: for ExtSource in Extended do
47: ExtDistr = D[ExtSource]
48: divergence = KLD(ExtDistr,Distr)
49: if divergence > KLDThreshold(NewOrder,ExtSource) then
50: ExtendRule(ExtSource, ExtSource,NewOrder, T)
51: else
52: ExtendRule(V alid, ExtSource,NewOrder, T)

Saebi et al. Page 26 of 27

Algorithm 2 (continued)

53: function AddToRules(Source):
54: for order in [1..len(Source) + 1] do
55: s = Source[0 : order]
56: if not s in D or len(D[s]) == 0 then
57: ExtendSource(s[1:])

58: for t in C[s] do
59: if C[s][t] > 0 then
60: R[s][t] = C[s][t]

61:

62: function ExtendSource(Curr)
63: if Curr in SourceToExtSource then
64: return SourceToExtSource[Curr]
65: else
66: ExtendObservation(Curr)
67: if Curr in SourceToExtSource then
68: return SourceToExtsource[Curr]
69: else
70: return ;
71:

72: function ExtendObservation(Source)
73: if length(Source) > 1 then
74: if not Source[1 :] in ExtC or ExtC[Source] = ; then
75: ExtendObservation(Source[1 :])

76: order = length(Source)
77: define ExtC as nested counter
78: for T index, index in StartingPoints[Source] do
79: if index� 1 0 and index+ order < length(T [T index]) then
80: ExtSource = T [T index][index� 1 : index+ order]
81: ExtC[ExtSource][Target]+ = 1
82: StartingPoints[ExtSource].add((T index, index� 1))

83: if ExtC = ; then
84: return
85: for S in ExtC do
86: for t in ExtC[s] do
87: if ExtC[s][t] < MinSupport then
88: ExtC[s][t] = 0

89: C[s][t]+ = ExtC[s][t]

90: CsSupport =
P

ExtC[s][⇤]
91: for t in ExtC[s] do
92: if ExtC[s][t] > 0 then
93: D[s][t] = ExtC[s][t]/CsSupport

94: SourceToExtSource[s[1 :]].add(s)

95:

96: function BuildSourceToExtSource(order)
97: for source in D do
98: if len(source) = order then
99: if len(source) > 1 then
100: NewOrder = len(source)
101: for startingin[1..len(source)] do
102: curr = source[starting :]
103: if not curr in SourceToExtSource then
104: SourceToExtSource[curr] = ;
105: if not NewOrder in SourceToExtSource[curr] then
106: SourceToExtSource[curr][NewOrder] = ;
107: SourceToExtSource[curr][NewOrder].add(source)

Saebi et al. Page 27 of 27

MinSupport 1 2 3 4 5
Precision 0.667 0.5 0.333 0.167 0.167
Recall 1 0.5 0.5 0.5 0.5

Table 2 Precision and recall values for the anomaly detection task using BuildHON with di↵erent
values of MinSupport.

E↵ect of MinSupport. In this section, we discuss the e↵ect of MinSupport pa-

rameter (in BuildHON) on the anomaly detection performance. We want to answer

the following question: Can we find an optimal value for MinSupport using param-

eter sweeping for BuildHON? Here we show that any values higher than 1 result in

lower performance for the anomaly detection using BuildHON. As a result, all the

experiments in the manuscript use MinSupport=1 for BuildHON.

We evaluate the anomaly detection performance on the real-world and synthetic

data with di↵erent values of MinSupport for BuildHON. The results for the real-

world data are shown in Table 2. We notice that for this data, MinSupport=1 was

the best value, as a higher value led to a decrease in recall and precision both. The

total running time for building the HONs (with di↵erent values of MinSupport) was

not significant (order of a few seconds with parallel processing), as the size of the

networks is small.

However, the computational time for building the HONs for the synthetic data was

significantly higher. The total running time for the parameter sweeping process was

4.372 hours (using parallel processing). On the other hand, the anomaly detection

performance was the same for the di↵erent MinSupport values we tried (1 - 5). This

is expected since the synthetic data does not have any noisy patterns.

Note that, MinSupport is a global threshold that applies to all paths regard-

less of order or support. This threshold should have the ability to vary by

path/order/support. For example, we may want to preserve paths that their dis-

tribution is very di↵erent from their lower-order variant, despite having smaller

support. Parameter sweeping for MinSupport does not necessarily help to preserve

significant rules while pruning noise, because it might prune lower orders too aggres-

sively or prune higher-order too mildly. It can also be too aggressive for significantly

di↵erent paths, or too mild for similar paths.

