Additional file

Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis

Kateryna Levada¹, Stanislav Pshenichnikov¹, Alexander Omelyanchik¹, Valeria Rodionova¹, Aleksey Nikitin², Alexander Savchenko², Igor Schetinin², Dmitry Zhukov², Maxim Abakumov², Alexander Majouga², Mariia Lunova^{3,4}, Milan Jirsa⁴, Barbora Smolková³, Mariia Uzhytchak³, Alexandr Dejneka³ and Oleg Lunov³*

¹Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia

²National University of Science and Technology "MISIS", Moscow, Russia

³Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

⁴Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic

* Corresponding author at: Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.

E-mail address: <u>lunov@fzu.cz (O. Lunov)</u>.

Additional figures

Figure S1. Transmission electron micrographs of the iron core of the nanoparticles.

Alexander

Figure S2. Alexander cells were stimulated with IO-cubes or IO-clusters ($100 \mu g/mL$) for 24 h and labeled with annexin V – green dye, propidium iodide – red dye and hoechst 33342 nuclear stain – blue. Labeled cells were imaged with epi-fluorescence microscopy.

Huh7

Figure S3. Huh7 cells were stimulated with IO-cubes or IO-clusters (100 μ g/mL) for 24 h and labeled with annexin V – green dye, propidium iodide – red dye and hoechst 33342 nuclear stain – blue. Labeled cells were imaged with epi-fluorescence microscopy.

Figure S4. HepG2 cells were stimulated with IO-cubes or IO-clusters (100 μ g/mL) for 24 h and labeled with annexin V – green dye, propidium iodide – red dye and hoechst 33342 nuclear stain – blue. Labeled cells were imaged with epi-fluorescence microscopy.

Figure S5. Alteration of mitochondrial morphology by IO-cubes and IO-clusters treatment. Alexander, HepG2 and Huh7 cells were stimulated with IO-cubes or IO-clusters (100 μ g/mL) for 24 h and labeled with MitoTracker® green. Positive control – 20 % ethanol for 20 min. Nuclei were labelled with hoechst 33342 nuclear stain (blue). Labeled cells were then imaged using spinning disk confocal microscopy.

Figure S6. Alexander cells were treated with fluorescently labeled (red) IO-cubes or IOclusters (100 μ g/mL) for 24 h and stained with LysoTracker (green), colocalization of fluorescently labeled nanoparticles with lysosomes (yellow). Positive control – 20 % ethanol for 20 min. Nuclei were labelled with hoechst 33342 nuclear stain (blue). Labeled cells were then imaged using spinning disk confocal microscopy.

Figure S7. Huh7 cells were treated with fluorescently labeled (red) IO-cubes or IO-clusters (100 μ g/mL) for 24 h and stained with LysoTracker (green), colocalization of fluorescently labeled nanoparticles with lysosomes (yellow). Positive control – 20 % ethanol for 20 min. Nuclei were labelled with hoechst 33342 nuclear stain (blue). Labeled cells were then imaged using spinning disk confocal microscopy.

Figure S8. HepG2 cells were treated with fluorescently labeled (red) IO-cubes or IO-clusters (100 μ g/mL) for 24 h and stained with LysoTracker (green), colocalization of fluorescently labeled nanoparticles with lysosomes (yellow). Positive control – 20 % ethanol for 20 min. Nuclei were labelled with hoechst 33342 nuclear stain (blue). Labeled cells were then imaged using spinning disk confocal microscopy.

Uncropped immunoblot scans

Figure 5B.

9