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Figure S1: Representing our BioBombe implementation workflow. We independently apply our 
approach to three transcriptome datasets including The Cancer Genome Atlas PanCanAtlas 
Project (TCGA), Genome-Tissue Expression Project (GTEx), and Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) initiative. For each dataset, we split 90% 
of the data into a training data partition and 10% of the data into a testing data partition. The 
data is split to match the proportion of cancer types or tissue types in each partition. We also 
randomly permute the gene expression values by gene for all samples in the training set. We 
proceed with the downstream approach for both real and permuted data in parallel. We apply 
five compression algorithms including principal components analysis (PCA), independent 
components analysis (ICA), non-negative matrix factorization (NMF), denoising autoencoders 
(DAE), and variational autoencoders (VAE). We compress the testing data partition using the 
trained weights learned from the training set. We sequentially compress the input data into 
various latent dimensionalities (k) from 2 dimensions to 200 dimensions. We use k = 2, 3, 4, 5, 
6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, and 200 for 
a total of 28 different dimensions. For each model, we train five independent times using five 
different random seed initializations. Combined, this yields a total of 4,200 different 
compression matrices. 
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Figure S2: Tracking performance across hyperparameter grid for autoencoder models. We 
searched over a grid of various hyperparameter combinations for denoising autoencoder (DAE) 
and variational autoencoder (VAE) architectures. Training with several combinations of 
parameters in certain DAE models performed with high validation loss in Genome-Tissue 
Expression Project (GTEx) and The Cancer Genome Atlas PanCanAtlas Project (TCGA) data 
(panels a and d). We also show DAE performance with these particular hyperparameter 
combinations removed (panels b and e). Performance for all VAE hyperparameter combinations 
are shown (panels c, f, and h). Interestingly, no DAE model trained on Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) initiative data had very poor 
performance despite it being the smallest dataset (Panel g). 
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Figure S3: Assessing reconstruction cost across datasets, algorithms, and latent 
dimensionalities. Reconstruction performance for (a) Genome-Tissue Expression Project (GTEx) 
(b) The Cancer Genome Atlas PanCanAtlas Project (TCGA) and (c) Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) initiative data. Only real testing data is 
shown for GTEx and TCGA to highlight specific performance differences that would be unable to 
visualize with the other data present. Figures depicting all data are provided in our publicly 
available source code: https://github.com/greenelab/BioBombe/blob/master/4.analyze-
components/ 
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Figure S4: Across algorithm stability as measured by singular vector canonical correlation 
analysis (SVCCA). Stability is measured for the weight matrices in (a) Genome-Tissue Expression 
Project (GTEx) and (b) Therapeutically Applicable Research to Generate Effective Treatments 
(TARGET). The boxplots represent all pairwise estimates of SVCCA mean similarity for all 
initializations (across seeds) for real data (upper triangle) and permuted data (lower triangle).  
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Figure S5: Across latent dimensionalitystability as measured by singular vector canonical 
correlation analysis (SVCCA). Stability is measured for the weight matrices in (a) Genome-Tissue 
Expression Project (GTEx) and (b) Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET). SVCCA can be measured in two weight matrices of different dimensions. 
The mean similarity represents the mean of all pairwise estimates across all algorithm 
initializations. There is some numerical instability observed in the PCA assessment of both plots.  
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Figure S6: Absolute ranking of top enriched gene set BioBombe z scores across algorithms. We 
ranked all BioBombe z scores of top scoring gene sets within specific collections across 
algorithms. All gene sets within a specific collection are visualized within each algorithm box 
plot and whether or not they were identified as a top feature in model dimensionalitiesless 
than k = 25. 
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Figure S7: Assessing gene set coverage of gene set collections and datasets. Tracking results in 
TCGA data for two gene set collections representing cell types (xCell) and hallmark pathways 
(H), results in GTEx data for cell types, and results in TARGET data for cell types and hallmarks. 
Coverage represents the percentage of gene sets represented as the top feature. (a) Coverage 
in individual models, which represents the score distribution across five algorithm iterations. (b) 
Coverage in ensemble models, which combines all five iterations in a single model. (c) Coverage 
in all models within k dimensions. The number of algorithm-specific unique gene sets identified 
is shown as bar charts. Coverage for every model combined is shown as a dotted navy blue line. 
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Figure S8: Tracking the dimensionalities of highest BioBombe enrichment signal for gene sets, 
algorithms, and datasets. The latent space dimension at which a gene set was identified with 
the highest enrichment across latent dimensionalities is shown. Observing the relative density 
of top features identified for several gene set collections across algorithms in (a) TCGA (b) 
TARGET data. Comparing (c) total counts and (d) relative density of xCell gene sets enrichment 
across latent dimensionality in GTEx data. 
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Figure S9: Pearson correlation between input and reconstructed samples in real and permuted 
data. Pearson sample correlation for real (top) and permuted (bottom) data in (a) Genome-
Tissue Expression Project (GTEx) and (b) Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET). (c) Pearson correlations in permuted data from The Cancer 
Genome Atlas PanCanAtlas Project (TCGA). (d) Pearson correlations between input and 
reconstructed output in permuted data to mirror select cancer-types in Figure 3. The data are 
permuted before input to the compression algorithms. Results across all specific cancer-types 
and tissue-types for GTEx, TARGET, and TCGA are provided in: 
https://github.com/greenelab/BioBombe/blob/master/4.analyze-components/ 
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Figure S10: Comparing overrepresentation analysis (ORA) with BioBombe derived scores for 
variational autoencoder (VAE) model for k = 3. VAE trained on gene expression data from 
Genome-Tissue Expression Project (GTEx). Enrichment results are shown for the xCell geneset 
collection. (a) ORA analysis applied to feature 0 for VAE k = 3. (b) Comparing BioBombe Z score 
against ORA significance for the same VAE feature. The two tails of the feature distribution are 
shown for the ORA analysis and were extracted from the high weight genes. High weight genes 
were defined as having higher or lower weights than 2 standard deviations of the mean weight 
distribution. Comparing the VAE k = 3 feature that captures the neutrophil gene set to the VAE 
k = 14 feature that captures this gene set with the highest enrichment for (c) xCell gene set 
BioBombe Z scores and (d) compression algorithm gene weights. 
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Figure S11: Applying optimal features implicating Neutrophil and Monocyte specific signatures 
to two external datasets. (a) Visualizing the highest enriched feature across algorithms and 
latent dimensionalities based on the –log 10 p value of an independent t-test comparing 
neutrophil (left) and monocyte (right) publicly available data after signature transformation. (b) 
Tracking the relationship between t-test significance and BioBombe scores of top gene sets 
across latent space dimensionalities. The increasing color intensity represents increasing 
dimension. 
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Figure S12: Predicting 33 cancer-types in The Cancer Genome Atlas (TCGA) PanCanAtlas Project 
with features derived from different compression algorithms across latent dimensionalities. We 
optimized logistic regression classifiers using compressed features for real and permuted data 
derived from five compression algorithms across dimensions. All 33 cancer-types are split 
across a series of three figures and are presented in alphabetical order. The area under 
precision recall (AUPR) for training data in cross validation intervals are shown. The blue lines 
represent compressed features derived from real training data input into the compression 
algorithms. The red lines represent compressed permuted data. The dotted lines in red and 
blue indicate performance with the raw RNAseq features and serve as baselines. All models, 
including the permuted data models, include covariates for cancer-type and log 10 mutation 
burden. The distribution of performance is provided in boxplots for all five algorithm 
initializations. The lines connect the mean of these algorithm initializations. 
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Figure S13: Predicting the top 50 most mutated genes in The Cancer Genome Atlas (TCGA) 
PanCanAtlas Project with features derived from different compression algorithms across latent 
dimensionalities. We independently optimized logistic regression classifiers using compressed 
features for real and permuted data derived from five compression algorithms across 
dimensions. All 50 mutations are split across a series of five figures and are presented in order 
of performance differences between real and permuted data. The area under precision recall 
(AUPR) for training data in cross validation intervals are shown. The blue lines represent 
compressed features derived from real training data input into the compression algorithms. The 
red lines represent compressed permuted data. The dotted lines in red and blue indicate 
performance with the raw RNAseq features and serve as baselines. All models, including the 
permuted data models, include covariates for cancer-type and log 10 mutation burden. The 
distribution of performance is provided in boxplots for all five algorithm initializations. The lines 
connect the mean of these algorithm initializations. 
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Figure S14: Evaluating execution time of training 5 compression algorithms across latent space 
dimensionalities. Comparing time in seconds of principal components analysis (PCA), 
independent components analysis (ICA), non-negative matrix factorization (NMF), denoising 
autoencoders (DAE), and variational autoencoders (VAE) in training models on GTEx, TCGA, and 
TARGET gene expression data. We compared training time across various latent space 
dimensionalities. Execution time calculated using a machine with an Intel Core i3 dual core 
processer CPU with 32 GB of DDR4 memory.  
 
 


