

Figure S1. Effects of kallisto pseudo-alignment efficiency on differences in TPM estimate Spearman's rank correlations between 2×40 vs. 1×125. Efficiency of 2×40 is presented as the total kallisto count for 2×40 for (a) transcripts and (b) genes, and contrasted with the efficiency of 1×125 in the form of count ratios for (c) transcripts and (d) genes. Symbol colors correspond to SRA accessions.

Figure S2. Effects of bowtie2 alignment rates on differences in RSEM TPM estimate Spearman's rank correlations between 2×40 vs. 1×75. Relative differences in efficiency are presented as the ratio of 2×40 to 1×75 TPM correlations with 2×125 TPM over the ratio of unique alignment rate for (a) transcripts and (b) genes, and over the ratio of overall alignment rates for (c) transcripts and (d) genes. Symbol colors correspond to SRA accessions.

Figure S3. Effects of bowtie2 alignment rates on differences in RSEM TPM estimate Spearman's rank correlations between 2×40 vs. 1×125. Relative differences in efficiency are presented as the ratio of 2×40 to 1×125 TPM correlations with 2×125 TPM over the ratio of unique alignment rate for (a) transcripts and (b) genes, and over the ratio of overall alignment rates for (c) transcripts and (d) genes. Symbol colors correspond to SRA accessions.

Figure S4. For limma-voom Wald tests, variation across SRA accessions, in (\mathbf{a}, \mathbf{b}) false negative rate, (\mathbf{c}, d) empirical false discovery rate (red line indicates FDR threshold of 0.01 for calling tests significant), and (e,f) AUC between $2 \times 40,1 \times 75$ and 1×125 sequencing strategies. Differences are plotted as means for Wald tests within accessions, for ($\mathbf{a}, \mathbf{c}, \mathbf{e}$) transcripts and ($\mathbf{b}, \mathbf{d}, \mathbf{f}$) genes.

Figure S5. For DESeq2 Wald tests, variation across SRA accessions, in (a,b) false negative rate, (\mathbf{c}, d) empirical false discovery rate (red line indicates FDR threshold of 0.01 for calling tests significant), and (e,f) AUC between $2 \times 40,1 \times 75$ and 1×125 sequencing strategies. Differences are plotted as means for Wald tests within accessions, for ($\mathbf{a}, \mathbf{c}, \mathbf{e}$) transcripts and ($\mathbf{b}, \mathbf{d}, \mathbf{f}$) genes.

Table S1. SRA accessions used in this study.

Accession	Organism	Instrument	Paired-end read length	Conditions	Biological replicates per condition	Kallisto	RSEM
SRP133853	H. sapiens	HiSeq 2500	125	6	3	x	x
SRP115815	H. sapiens	HiSeq 2500	125-126	9	3	X	
SRP105271	M. musculus	HiSeq 2000	125	5	3-4	x	
SRP143508	M. musculus	HiSeq X Ten	150	2	3	X	
SRP096374	M. musculus	HiSeq 4000	150	2	3	x	x
ERP017328	D. melanogaster	HiSeq 2500	126	2	3	X	
SRP128516	D. melanogaster	HiSeq 4000	151	2	3	x	x
SRP089981	C. elegans	NextSeq 500	151	4	5	X	
SRP092256	C. elegans	HiSeq 2500	126	7	5	X	
SRP129557	C. elegans	HiSeq 3000	126	4	3	x	x
SRP133093	S. cerevisiae	HiSeq 2000	151	4	3	X	X
SRP142501	S. cerevisiae	HiSeq X Ten	150	2	3	x	

Table S2. Across all assayed SRA accessions, percentages of pairwise differential expression tests between conditions where a performance metric is greater for 2×40 compared to 1×75 or 1×125. Gene-level analyses are not included for yeast accessions (SRP133093 and SRP142501) as this species has no alternative splicing, such that there is only one annotated transcript per gene. Bold values indicate those where 2×40 outperforms the evaluated single-end strategy. NA indicates there were < 50 differentially expressed features such that performance metrics were not calculated.

	transcript		gene	
Metric	2x40 > 1x75	$2 \times 40>1 \times 125$	2x40 > 1x75	2x40>1x125
sleuth				
empirical false discovery rate				
ERP017328	0	0	0	0
SRP089981	0	80	0	0
SRP092256	0	0	0	0
SRP096374	0	0	0	0
SRP105271	0	90	0	0
SRP115815	0	0	0	11.1
SRP129557	0	0	0	0
SRP133093	0	0	0	0
SRP133853	46.7	46.7	46.7	46.7
SRP142501	0	0	0	0
false negative rate				
ERP017328	0	0	0	0
SRP089981	0	20	0	0
SRP092256	0	0	0	0
SRP096374	0	0	0	0
SRP105271	0	100	0	100
SRP115815	0	8.3	0	27.8
SRP129557	0	0	0	0
SRP133093	0	0	-	-
SRP133853	0	0	13.3	13.3
SRP142501	0	0	-	-

false positive rate

ERP017328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981	80	80	60	$\mathbf{8 0}$
SRP092256	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP096374	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP105271	$\mathbf{0}$	90	$\mathbf{2 0}$	80
SRP115815	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 . 6}$	$\mathbf{1 6 . 7}$
SRP129557	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133093	$\mathbf{0}$	$\mathbf{0}$	-	-
SRP133853	60	60	53.3	53.3
SRP142501	$\mathbf{0}$	$\mathbf{0}$	-	-

sensitivity
ERP017328

SRP089981
SRP092256
SRP096374
SRP105271
SRP115815
SRP129557
SRP133093
SRP133853
SRP142501
specificity
ERP017328
SRP089981
SRP092256
SRP096374
SRP105271
SRP115815
SRP129557
SRP133093
SRP133853
SRP142501
precision
ERP017328
SRP089981
SRP092256
SRP096374
SRP105271
SRP115815
SRP129557
SRP133093
SRP133853
SRP142501
auc

ERP017328	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP089981	$\mathbf{1 0 0}$	$\mathbf{8 0}$
SRP092256	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP096374	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP105271	$\mathbf{1 0 0}$	0
SRP115815	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP129557	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP133093	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

100	100
100	100
100	100
100	100
100	0
100	72.2
100	100
-	-
86.7	86.7
-	-

100	100
40	20
100	100
100	100
80	20
94.4	83.3
100	100
-	-
46.7	46.7

-

40
100
100
20
88.9

100
53.3

100
100
100
100
30
100
100

SRP133853	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP142501	100	100	-	-

limma-voom

empirical false discovery rate

ERP017328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP092256	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$
SRP096374	100	100	100	$\mathbf{0}$
SRP105271	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4 0}$
SRP115815	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 . 6}$	$\mathbf{2 5}$
SRP129557	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133093	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133853	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{4 2 . 9}$	50
SRP142501	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

false negative rate

ERP017328 (1)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981 (4)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 5}$
SRP092256 (19)	$\mathbf{2 1}$	89.5	$\mathbf{0}$	$\mathbf{3 0}$
SRP096374 (1)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP105271 (9)	$\mathbf{2 2 . 2}$	77.8	70	100
SRP115815 (36)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP129557 (3)	$\mathbf{0}$	$\mathbf{3 3 . 3}$	$\mathbf{1 6 . 7}$	$\mathbf{3 3 . 3}$
SRP133093 (6)	$\mathbf{3 3 . 3}$	50	-	-
SRP133853 ()???	50	$\mathbf{2 5}$	$\mathbf{3 5 . 7}$	$\mathbf{4 2 . 9}$
SRP142501 (1)	100	100	-	-

false positive rate

ERP017328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP092256	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 . 0}$
SRP096374	100	100	100	$\mathbf{0}$
SRP105271	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0}$
SRP115815	$\mathbf{1 1 . 1}$	$\mathbf{0}$	$\mathbf{8 . 3}$	$\mathbf{3 0 . 6}$
SRP129557	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133093	$\mathbf{0}$	$\mathbf{0}$	-	-
SRP133853	50	75	57.1	50
SRP142501	$\mathbf{0}$	$\mathbf{0}$	-	-

sensitivity
ERP017328
SRP089981
SRP092256
SRP096374
SRP105271
100
100
78.9
100
100
100
10.5
100
11.1

100	100
100	75
100	60
100	100
30	0

SRP115815	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP129557	100	$\mathbf{6 6 . 7}$	$\mathbf{8 3 . 3}$	$\mathbf{6 6 . 7}$
SRP133093	$\mathbf{6 6 . 7}$	50	-	-
SRP133853	50	$\mathbf{7 5}$	$\mathbf{6 4 . 3}$	$\mathbf{5 7 . 1}$
SRP142501	0	0	-	-

specificity

ERP017328	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP089981	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP092256	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{9 5}$
SRP096374	0	0	0	$\mathbf{1 0 0}$
SRP105271	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{8 0}$
SRP115815	$\mathbf{8 8 . 9}$	$\mathbf{1 0 0}$	$\mathbf{9 1 . 7}$	$\mathbf{6 9 . 4}$
SRP129557	100	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP133093	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-
SRP133853	50	25	42.9	50
SRP142501	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-

precision

ERP017328

SRP089981
SRP092256
SRP096374
SRP105271
SRP115815
SRP129557
SRP133093
SRP133853
SRP142501
auc

ERP017328	100	100	100	0
SRP089981	100	100	100	100
SRP092256	100	100	100	75
SRP096374	0	0	100	100
SRP105271	100	33.3	60	10
SRP115815	100	100	100	94.4
SRP129557	100	100	100	100
SRP133093	100	100	-	-
SRP133853	100	100	100	71.4
SRP142501	100	0	-	-

DESeq2

false discovery rate

ERP017328	0	0	0	0
SRP089981	0	0	0	20

SRP092256	$\mathbf{4 . 8}$	$\mathbf{9 . 5}$	$\mathbf{0}$	$\mathbf{4 . 8}$
SRP096374	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP105271	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0}$
SRP115815	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 . 8}$	$\mathbf{8 . 3}$
SRP129557	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133093	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP133853	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 3 . 3}$	$\mathbf{2 0}$
SRP142501	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP128516	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP143508	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

false negative rate

ERP017328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP092256	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{9 . 5}$	$\mathbf{4 2 . 9}$
SRP096374	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	100
SRP105271	$\mathbf{2 0}$	100	90	100
SRP115815	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP129557	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 6 . 7}$
SRP133093	$\mathbf{0}$	$\mathbf{3 3 . 3}$	-	-
SRP133853	$\mathbf{0}$	$\mathbf{2 0}$	66.7	93.3
SRP142501	$\mathbf{0}$	$\mathbf{0}$	-	-
SRP128516	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP143508	$\mathbf{0}$	$\mathbf{0}$	NA	NA

false positive rate

ERP017328	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP089981	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0}$
SRP092256	$\mathbf{9 . 5}$	$\mathbf{1 4 . 3}$	$\mathbf{0}$	$\mathbf{4 . 8}$
SRP096374	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP105271	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0}$
SRP115815	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{8 . 3}$	$\mathbf{1 1 . 1}$
SRP129557	$\mathbf{0}$	$\mathbf{1 6 . 7}$	$\mathbf{0}$	$\mathbf{0}$
SRP133093	$\mathbf{0}$	$\mathbf{0}$	-	-
SRP133853	$\mathbf{4 6 . 7}$	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{2 0}$
SRP142501	$\mathbf{0}$	$\mathbf{0}$	-	-
SRP128516	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
SRP143508	$\mathbf{0}$	$\mathbf{0}$	NA	NA

sensitivity
ERP017328
SRP089981
SRP092256
SRP096374
SRP105271
100
100
100
100
80
100
100
100
100
0

100	100
100	100
90.5	52.4
100	0
10	0

SRP115815	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP129557	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{6 6 . 7}$
SRP133093	$\mathbf{1 0 0}$	$\mathbf{6 6 . 7}$	-	-
SRP133853	$\mathbf{1 0 0}$	$\mathbf{8 0}$	33.3	6.7
SRP142501	0	0	-	-
SRP128516	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP143508	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	NA	NA

specificity
ERP017328
SRP089981
SRP092256
SRP096374
SRP105271
SRP115815
SRP129557
SRP133093
SRP133853
SRP142501
SRP128516
SRP143508

precision

ERP017328

100	100	100	100
100	100	100	80
95.2	90.5	100	95.2
100	100	100	100
100	100	100	80
100	100	97.2	91.7
100	100	100	100
100	100	-	-
100	100	86.7	80
100	100	-	-
100	100	100	100
100	100	NA	NA

auc

ERP017328	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP089981	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP092256	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP096374	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP105271	$\mathbf{1 0 0}$	40	$\mathbf{9 0}$	0
SRP115815	100	100	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP129557	100	100	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP133093	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	-	-

SRP133853	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{9 3 . 3}$	$\mathbf{7 3 . 3}$
SRP142501	0	0	-	-
SRP128516	100	100	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
SRP143508	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	NA	NA

