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Figure S1. An example image for analyzing elastic fibers. Only alveolar elastic fibers, at the tips of 

secondary septa or alveolar walls, were selected for quantification in Fig. 4c-e.



negative double positive

Cells considered as PDGFR+SMA+ when both cytoplasmic 

signals surrounding more than a half of nucleus. Similarly for 

single positive (PDGFR+ or SMA+ ) cells.
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Figure S2. Example images for counting Immunofluorescence signal-positive cells. The 4-channel

images taken from CPEB2-WT and CPEB2-KO pulmonary sections labelled for DAPI, SMA,

PDGFR and BrdU could be selectively merged and pseudo-colored for image presentation and

quantification.
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Figure S3. Enlarged alveolar space in adult CPEB2-KO mice. a H&E staining of lung sections

prepared from adult CPEB2-WT (CP2WT) and CPEB2-KO (CP2KO) mice (P60, n = 8 mice per

group). Histological analysis to determine the mean linear intercepts (MLI, examples denoted by red

lines). Scales, 200 m. b Immunohistochemical staining of caveolin-1 (Cav1) for type I alveolar

epithelial cells (AECs) and pro-surfactant-C (SFTPC) for type II AECs in adult lung sections. Arrows

denote the positive signals. Scales, 100 m. c The number of leukocytes in the bronchoalveolar

lavage fluid (BALF) from CP2WT (n = 5) and CP2KO mice (n = 6). d Lungs were isolated from adult

CP2WT and CP2KO mice (n = 4-5 per group) for RT-qPCR of IL-1, IFN and MMP9 mRNA levels

relative to GAPDH. Data are mean ± s.e.m, **P < 0.01, by two-tailed Student’s t test.
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Figure S4. CPEB2 deficiency does not affect the populations of type I and type II AECs. a Illustration

of alveolar cells involved in the formation of secondary septa during the alveolar phase of lung

development. b Immunoblotting of caveolin-1 (Cav1) for type I AECs and pro-surfactant-C (SFPC) for

type II AECs in P1 and P3 lung lysates. c Hopx-immunostained images from P3 WT and CPEB2-KO

lungs with magnified images of selected areas shown in c’. The number of Hopx+ type I AECs was

quantified from 5 mice per genotype. Data are mean ± s.e.m. Scales, 100 m in c and 25 m in c’.
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Figure S5. CPEB2 deficiency impairs polarity of MYFs during migration. a Primary pulmonary MYF

cultures were harvested for immunoblotting of CPEB2, αSMA, α-tubulin and β-actin. b Cultured

pulmonary MYFs were fixed for immunostaining of CPEB2 and αSMA and DAPI-labeling. Scale, 20

m. c Time-lapse images and quantification of WT and CPEB2-KO MYF repopulation in wound-

healing assay. The wounded areas at the denoted time after scratching were measured, with the area

at 0 h set to 100%. Data are mean ± s.e.m from 4 independent experiments. d Cell/Golgi polarity

assay. CPEB2-WT and -KO MYF cultures at 6 h after scratching were fixed for DAPI-labeling and

immunostaining of the Golgi marker GM130. Polarized (or oriented) MYFs were defined when the

GM130-stained Golgi was oriented within a 60° angle perpendicular to the migration direction toward

the wound. Data are mean ± s.e.m. from 3 independent experiments, *P < 0.05, by two-tailed

Student’s t test. Scale, 100 m.



Figure S6. The expression of CPEB2 and PDGFR in MYFs isolated from different postnatal ages. 

Primary MYFs were cultured from P1, P3, P7, P14 and P21 lung tissues (2 independent cultures from 

2 mice per postnatal day) and then harvested at DIV1 for immunoblotting of PDGFR, CPEB2, -actin 

and GAPDH. 
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Figure S7. Reduced proliferating MYF precursors in CPEB2-KO lung. 3D rendering images of P10

WT and KO lungs immunostained with BrdU, PDGFR and SMA. Arrowheads and arrows in

magnified images of selected alveoli denote BrdU+PDGFR+ and BrdU+PDGFR+SMA+ cells,

respectively. Scales, 50 m.
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Figure S8. Unaltered PDGFR mRNA level in CPEB2-KO lung. P0 and P3 CP2WT and CP2KO lungs 

were harvested for RT-qPCR of PDGFR mRNA level relative to -actin. Data are mean ± s.e.m. from 

3 mice per genotype at P0 and 6 mice per genotype at P3.
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Figure S9. Impaired PDGF-A–induced Ki67 expression in CPEB2-KO MYF culture. CPEB2-WT

and CPEB2-KO MYFs infected with lentiviruses expressing GFP or myc-CPEB2 were treated with

PDGF-A for the indicated time, followed by labeling of DAPI, CPEB2, Ki67 and SMA. Representative

images of each time point are shown. Because of low GFP level, its auto-fluorescence

did not interfere with Ki-67-immunostained signal.

C
P

2
W

T
+

G
F

P
C

P
2
K

O
+

G
F

P

C
P

2
K

O
 +

 

m
y
c
-C

P
2

C
P

2
W

T
+

G
F

P
C

P
2
K

O
+

G
F

P

C
P

2
K

O
 +

 

m
y
c
-C

P
2

DAPI Ki67 SMA CPEB2 Ki67/ SMA DAPI/ Ki67/ SMA

DAPI Ki67 SMA CPEB2 Ki67/ SMA DAPI/ Ki67/ SMA




