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Section A: Descriptor calculation and selection of fluorescence dataset 

Selection of training and test data 

 

    A complete chromophore derivative list of the dye types is given in Table S1. 

Two-dimensional (2D) structures were generated in a standardizer software that 

canonized structures, added hydrogens and performed aromatic form conversions [1]. 

3D structures were optimized, and the geometries of the minimum energy 

conformations were obtained using the MMFF94 optimization routine the MMFF94 

force field with Knime nodes[2]. 

 

Table S1. Chromophore derivatives (dye type) and number of dyes in data set. 

Dye type Number of dyes Dye type Number of dyes 

Acridine 10 Luminogren 2 

Anthracene 9 Naphthalene 8 

Benzene 20 Perylene 13 

Benzothiazole 3 Phenoxazine 11 

Benzoxadiazole 4 Phenyloxazole 8 

Benzoxazole 13 Porphyrine 10 

BODIPY 16 Pyrene 12 

Coumarin 50 Quinoline 2 

Cyanine 123 Xanthene 79 

Fluorene 2 Others 18 

 

 

Calculation of quantum chemical (QC) descriptors 

 

    25 quantum mechanical properties calculated by Gaussian 09 software. The 

geometry optimization and molecular descriptor calculations were performed using 

Gaussian 09.[3] The geometries of the molecules were optimized with the B3LYP 

density functional method [4], using the 6–31G* basis set, and were followed by 

frequency calculations to verify true energy minima. The calculated quantum 

chemical (QC) descriptors include: 
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1. 2 atomic force descriptors: maximum force on molecules (FMAX), root mean 

square force (FRMS),  

2. 4 energy descriptors: highest Occupied Molecular Orbital (HOMO), Lowest 

Unoccupied Molecular Orbital (LUMO), HOMO-LUMO gap, thermal energy (TE),  

3. 6 charge information descriptors: minimum of negative charge (MNQ) and positive 

charge (MPQ), sum of negative charge (SNQ) and positive charge (SPQ), average 

of negative charge (ANQ) and positive charge (APQ),  

4. 13 polar related descriptors: dipole moment (DP), exact polarizability, (EP(xx), 

EP(xy), EP(yy), EP(xz), EP(yz), EP(zz)) and approximate polarizability (AP(xx), 

AP(xy), AP(yy), AP(xz), AP(yz), AP(zz)). 

 

Descriptor selection of fluorescence 

    In order to development of robust, predictive and interpretable models on the 

basis of RF, it is essential to select appropriate descriptors to construct models. We 

compare two models of fluorescence wavelength (λem) prediction using RF with 

different descriptors:  

(1) RF(RDKit) model with RDKit descriptors, QC descriptors, and solvent (196 

descriptors),  

(2) RF model with Dragon 7 descriptors, QC descriptors, and solvent (2,169 

descriptors),  

The results of the three models are shown in Table S2, Figure S2, and Figure S3. The 

prediction result of RF is much better than the RF(RDKit) result. It might be a good 

suggestion that Dragon 7 descriptor is more suitable for fluorescence prediction. 

 

Table S2. The coefficient of determination and root mean square error value for the 

different models. 

 Training dataset Test dataset 

  RMSE (nm)  RMSE (nm) 

RF(RDKit) 0.958 24.23 0.859 41.79 

RF 0.966 22.25 0.904 34.42 
 

2R 2R
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Fig. S1 Experimental values versus calculated values of λem by RF(RDKit). 
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Section B: Descriptor selection of liquid crystal dataset 

Separation of mesogen and wings  

 

Most LCs are combinations of rigid and flexible chains induce structural alignment 

and fluidity between liquid crystal moieties. Figure S1 depicts an example of LC 

structures. The rigid moieties, so called “mesogen”, have distinctive shapes such as 

such as cyclohexane, benzene, and biphenol. The flexible segments (wings) provide 

mesogens with mobility such as alkyl chains. The mesogen types including different 

side chains and the flexibility of wings are important factors to LC behaviors.  

We construct a program to extract LC’s mesogens and wings by RDKit. The 

information of mesogens and wings were storage for subsequent RDkit descriptor 

calculation.  

 

 
Figure S2. Structure separation of rod-like LCs. 

 

 

Descriptor calculation and selection of liquid crystal 

 

    A critical part is coming up with a good set of features for both prediction and 

model interpretation. First, we compare the results of two RF models using 3,663 

Dragon 7 descriptors and 168 RDkit descriptors. Then, we tried to separate 

compounds in two parts, mesogen and wing and calculate the molecular descriptors of 

each fragment. Table S2 shows the number of descriptors we used to construct RF 

classifiers. To improve interpretability, we removed all topological descriptors in 

RDKit_separate2 model because topological descriptors have less intuitive physical 

wing	2 mesogen wing1
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explanations. From the results in Table S3, though, Dragon 7 has a large variety of 

descriptors, 168 RDkit descriptors are enough for training a RF model of LC 

classification. The separation of LC has slight improvement of the classification 

results. The remove of topological descriptors in RDKit_separate2 model did not 

reduce the predictability compared to RDKit_separate model. Therefore, we used 250 

descriptors of RDKit_separate2 to construct models in this research. 

 

Table S2. Descriptors for RF classifier training 

Model Dragon 7 RDKit RDKit_separate RDKit_separate2 

Number of 

descriptors 

3,663 168 168 (raw structure) 84 (raw structure) 

155 (mesogen) 72 (mesogen) 

122 (wings) 46 (wing1) 

125 (wing2) 48 (wing2) 

 

 

Table S3. Performance metrics values for the different classifiers and corresponding 
confusion tables. 

 Training set Test set 

 Acc 

(%) 

Pr 

(%) 

r 

(%) 

F1 

(%) 

Acc 

(%) 

Pr 

(%) 

r 

(%) 

F1 

(%) 

Actual 

class 

Predicted class 

LC NLC 

Dragon 7 99.7  99.8  99.8  99.8  87.6  90.6  93.5  92.0  LC 673 47 

NLC 70 157 

RDKit 99.7  99.9  99.8  99.8  87.4  90.3  93.5  91.9  LC 673 47 

NLC 71 156 

RDKit 

separate 

99.8 99.9 99.7 99.8 88.7 92.1 93.1 92.6 LC 670 50 

NLC 57 170 

RDKit 

separate2 

99.3 99.5 99.6 99.5 88.3 91.6 93.3 92.4 LC 672 48 

NLC 62 165 
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Section C: Additional information of Case study1 

The hyper-parameters of models in Case study 1 

RF:   n_estimators=110, min_samples_split = 5, min_samples_leaf= 1 

ExtraTrees:  n_estimators=110, min_samples_split = 8, min_samples_leaf= 1 

AdaBoost:  base_estimator=DecisionTreeRegressor(max_depth=6), 

n_estimators=100, learning_rate= 1, loss='exponential' 

GBM:   n_estimators=100, max_depth=6, learning_rate=0.1 

Level-1 GBM in any blending: n_estimators=10, max_depth=8, learning_rate=0.1 

 

 

Figures of experimental values versus calculated values in Case study 1 

 
Fig. S3 Experimental values versus calculated values of λem by RF. 



 9 

 
Fig. S4 Experimental values versus calculated values of λem by ExtraTrees. 

 
Fig. S5 Experimental values versus calculated values of λem by AdaBoost. 
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Fig. S6 Experimental values versus calculated values of λem by GBM. 

 
Fig. S7 Experimental values versus calculated values of λem by uniform blending. 
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Fig. S8 Experimental values versus calculated values of λem by linear blending. 
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Section D: Additional information of Case study 2 

The hyper-parameters of models in Case study 2 

The hyper-parameters did not affect the mode training in LC prediction. Thus, we 

only coordinate n_estimators and max_depth. 

RF:   n_estimators=400 

ExtraTrees:  n_estimators=400 

AdaBoost:  base_estimator=DecisionTreeRegressor(max_depth=5), 

n_estimators=400, learning_rate= 0.1 

GBM:   n_estimators=400, max_depth=5, learning_rate=0.1 

Level-1 GBM in any blending: n_estimators=10, max_depth=4, learning_rate=0.2 

 

Bar charts of feature importance in Case study 2 

 
Fig. S9 Bar chart of top 20 important descriptors selected by RF. 
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Fig. S10 Bar chart of top 20 important descriptors selected by ExtraTrees. 

 
Fig. S11 Bar chart of top 20 important descriptors selected by AdaBoost. 
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Fig. S12 Bar chart of top 20 important descriptors selected by GBM. 

 
Fig. S13 Bar chart of top 20 important descriptors selected by uniform blending. 
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Fig. S14 Bar chart of top 20 important descriptors selected by linear blending. 
 

 

Fig. S15 Bar chart of top 20 important descriptors selected by any blending. 
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