
Stage 1 Registered Report 

 

Same data, different analysts: variation in effect sizes due to analytical decisions 

in ecology and evolutionary biology 
 

Tim Parker, Department of Biology, Whitman College, Walla Walla WA, 99362 USA 

Hannah Fraser, School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia 

Shinichi Nakagawa, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental 

Sciences, University of New South Wales, Randwick, New South Wales, Australia 

Elise Gould, School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia 

Simon Griffith, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 

2109, Australia 

Pete Vesk, School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia 

Fiona Fidler, School of BioSciences and School of Historical and Philosophical Studies, University of 

Melbourne, Melbourne, Victoria, Australia 

and all recruited analysts and analysis reviewers 

 

 

  



Abstract 

 

Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, 

there is evidence that such variation may far exceed what might be produced by sampling error. This 

evidence comes from a growing meta-research agenda that seeks to describe and explain variation in 

reliability of scientific results. One possible explanation for variation among results is differences among 

researchers in the decisions they make regarding statistical analyses. The best evidence for this comes 

from a recent social science study that asked 29 different research teams to answer the same question 

independently by analyzing the same data set. Although many of the effect sizes were similar, some 

differed substantially from the average. We plan to implement an analogous study in ecology and 

evolutionary biology, a field in which there has been no empirical exploration of the variation in effect 

sizes or model predictions of dependent variables generated by analytical decisions of different 

researchers. We have obtained two unpublished data sets, one from evolutionary ecology and one from 

conservation ecology, and we will recruit as many independent scientists as possible to conduct analyses 

of these data to answer prespecified research questions. We will also recruit peer reviewers to rate the 

analyses based on their methodological descriptions so that we have multiple ratings of each analysis. 

Next we will quantify the variability in choices of independent variables among analyses and, using 

meta-analytic techniques, describe and quantify the degree of variability among effect sizes and 

predicted values for each of the data sets. Finally, we will quantify the extent to which deviation of 

individual effect sizes and predicted values from the meta-analytic mean for that data set is explained by 

peer review ratings and by the ‘uniqueness’ of the set of variables chosen for the analysis by each team.   
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Introduction  

 

One value of science derives from its production of replicable, and thus reliable, results. When we 

repeat a study using the original methods we should be able to expect a similar result. However, perfect 

replicability is not a reasonable goal. Effect sizes will vary, and even reverse in sign, by chance alone 

(Gelman and Weakliem 2009). However, observed patterns can differ for other reasons as well. It could 

be that we do not sufficiently understand the conditions that led to the original result so when we seek 

to replicate it, the conditions differ due to some ‘hidden moderator’. This hidden moderator hypothesis 

is described by meta-analysts in ecology and evolutionary biology as ‘true biological heterogeneity’ 

(Senior et al. 2016). This idea of true heterogeneity is popular in ecology and evolutionary biology, and 

there are good reasons to expect it to be true in the complex systems in which we work (Shavit and 

Ellison 2017). However, despite similar expectations in psychology, recent evidence in that discipline 

contradicts the hypothesis that moderators are common obstacles to replicability, as variability in 

results in a large ‘many labs’ collaboration was largely unrelated to commonly hypothesized moderators 

such as the conditions under which the studies were administered (Klein et al. 2018). Another possible 

explanation for variation in effect sizes is that researchers often present biased samples of results, thus 

reducing the likelihood that later studies will produce similar effect sizes (Open_Science_Collaboration 

2015, Parker et al. 2016, Forstmeier et al. 2017, Fraser et al. 2018). It also may be that although 

researchers did successfully replicate the conditions, the experiment, and measured variables, analytical 

decisions differed sufficiently among studies to create divergent results (Simonsohn et al. 2015, 

Silberzahn et al. 2018). 

 

Analytical decisions vary among studies because researchers have many options. Researchers need to 

decide how to exclude possibly anomalous or unreliable data, how to construct variables, which 

variables to include in their models, and which statistical methods to use. Depending on the data set, 

this short list of choices could encompass thousands or millions of possible alternative specifications 

(Simonsohn et al. 2015). However, researchers making these decisions presumably do so with the goal 

of doing the best possible analysis, or at least the best analysis within their current skill set. Thus it 

seems likely that some specification options are more probable than others, possibly because they have 

previously been shown (or claimed) to be better, or because they are more well known. Of course, some 

of these different analyses (maybe many of them) may be equally valid alternatives. Regardless, on 

probably any topic in ecology and evolutionary biology, we can encounter differences in choices of data 

analysis. The extent of these differences in analyses and the degree to which these differences influence 

the outcomes of analyses and therefore studies’ conclusions are important empirical questions. These 

questions are especially important given that many papers draw conclusions after applying a single 

method, or even a single statistical model, to analyze a data set. 

 

The possibility that different analytical choices could lead to different outcomes has long been 

recognized, and various efforts to address this possibility have been pursued in the literature. For 

instance, one common method in ecology and evolutionary biology involves creating a set of candidate 

models, each consisting of a different (though often similar) set of predictor variables, and then, for the 

predictor variable of interest, averaging the slope across all models (i.e. model averaging) (Burnham and 



Anderson 2002, Grueber et al. 2011). This method reduces the chance that a conclusion is contingent 

upon a single model specification, though use and interpretation of this method is not without 

challenges (Grueber et al. 2011). Further, the models compared to each other typically differ only in the 

inclusion or exclusion of certain predictor variables and not in other important ways, such as methods of 

parameter estimation. More explicit examination of outcomes of differences in model structure, model 

type, data exclusion, or other analytical choices can be implemented through sensitivity analyses (e.g., 

Noble et al. 2017). Sensitivity analyses, however, are typically rather narrow in scope, and are designed 

to assess the sensitivity of analytical outcomes to a particular analytical choice rather than to a large 

universe of choices. Recently, however, analysts in the social sciences have proposed extremely 

thorough sensitivity analysis, termed ‘multiverse analysis’ (Steegen et al. 2016) or the ‘specification 

curve’ (Simonsohn et al. 2015), as a means of increasing the reliability of results. With these methods, 

researchers identify relevant decision points encountered during analysis and conduct the analysis many 

times to incorporate all plausible decisions made at each of these points. The study’s conclusions are 

then based on a broad set of the possible analyses and so allow the analyst to distinguish between 

robust conclusions and those that are highly contingent on particular model specifications. These are 

useful outcomes, but specifying a universe of possible modelling decisions is not a trivial undertaking. 

Further, the analyst’s knowledge and biases will influence decisions about the boundaries of that 

universe, and so there will always be room for disagreement among analysts about what to include. 

Including more specifications is not necessarily better. Some analytical decisions are better justified than 

others, and including biologically implausible specifications may undermine this process. Regardless, 

these powerful methods have yet to be adopted, and even more limited forms of sensitivity analyses are 

not particularly widespread. Most studies publish a small set of analyses and so the existing literature 

does not provide much insight into the degree to which published results are contingent on analytical 

decisions. 

 

Despite the potential major impacts of analytical decisions on variance in results, the outcomes of 

different individuals’ data analysis choices have received limited empirical attention. The only formal 

exploration of this that we are aware of were (1) an analysis in social science that asked whether male 

professional football (soccer) players with darker skin tone were more likely to be issued red cards 

(ejection from the game for rule violation) than players with lighter skin tone (Silberzahn et al. 2018) and 

(2) an analysis in neuroimaging which evaluated nine separate hypotheses involving the neurological 

responses detected with fMRI in 108 participants divided between two treatments in a decision making 

task (Botvinik-Nezer et al. 2019).  

 

In the red card study, twenty-nine teams designed and implemented analyses of a data set provided by 

the study coordinators (Silberzahn et al. 2018). Analyses were peer-reviewed (results blind) by at least 

two other participating analysts; a level of scrutiny consistent with standard pre-publication peer-

review. Among the final 29 analyses, odds-ratios varied from 0.89 to 2.93, meaning point estimates 

varied from having players with lighter skin tones receive more red cards (odds ratio < 1) to a strong 

effect of players with darker skin tones receiving more red cards (odds ratio > 1). Twenty of the 29 

teams found a statistically-significant effect in the predicted direction of players with darker skin tones 



being issued more red cards. This degree of variation in peer-reviewed analyses from identical data is 

striking, but the generality of this finding has only just begun to be formally investigated.  

 

In the neuroimaging study, 70 teams evaluated each of the nine different hypotheses with the available 

fMRI data (Botvinik-Nezer et al. 2019). These 70 analysts followed a divergent set of workflows that 

produced a wide range of results. The rate of reporting of statistically significant support for the nine 

hypotheses ranged from 21% to 84%, and for each hypothesis on average, 20% of research teams 

observed effects that differed substantially from the majority of other teams. Some of the variability in 

results among studies could be explained by analytical decisions such as choice of software package, 

smoothing function, and parametric versus non-parametric corrections for multiple comparisons. 

However, substantial variability among analyses remained unexplained, and presumably emerged from 

the many different decisions each analyst made in their long workflows. Such variability in results among 

analyses from this data set and from the very different red-card data set suggests that sensitivity of 

analytical outcome to analytical choices may characterize many distinct fields.  

 

To further develop the empirical understanding of the effects of analytical decisions on study outcomes, 

we chose to estimate the extent to which researchers’ data analysis choices drive differences in effect 

sizes, model predictions, and qualitative conclusions in ecology and evolutionary biology. This is an 

important extension of the meta-research agenda of evaluating factors influencing replicability in 

ecology, evolutionary biology, and beyond (Fidler et al. 2017). To examine the effects of analytical 

decisions, we have two different data sets and we will recruit researchers to analyze one or the other of 

these data sets to answer a question we have defined. The first question is “To what extent is the 

growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with siblings?” To answer 

this question, we have a data set that includes brood size manipulations from 332 broods conducted 

over three years at Wytham Wood, UK. The second question is “How does grass cover influence 

Eucalyptus spp. seedling recruitment?” For this question, analysts will use a data set that includes, 

among other variables, number of seedlings in different size classes, percentage cover of different life 

forms, tree canopy cover, and distance from canopy edge from 351 quadrats spread among 18 sites in 

Victoria, Australia. 

 

We will explore the impacts of data analysts’ choices with descriptive statistics and with a series of tests 

to attempt to explain the variation among effect sizes and predicted values of the dependent variable 

produced by the different analysis teams for both data sets separately. To describe the variability, we 

will present forest plots of the standardized effect sizes and predicted values produced by each of the 

analysis teams, estimate heterogeneity (both absolute [τ2] and proportional [I2]) in effect size and 

predicted values among the results produced by these different teams, and calculate a similarity index 

that quantifies variability among the predictor variables selected for the different statistical models 

constructed by the different analysis teams. These descriptive statistics will provide the first estimates of 

the extent to which explanatory statistical models and their outcomes in ecology and evolutionary 

biology vary based on the decisions of different data analysts. We will then quantify the degree to which 

the variability in effect size and predicted values can be explained by (1) variation in the quality of 



analyses as rated by peer reviewers and (2) the similarity of the choices of predictor variables between 

individual analyses.  

 

 

Methods 

 

This project involves a series of steps (1-6) that begin with identifying data sets for analyses and 

continue through recruiting independent groups of scientists to analyze the data, allowing the scientists 

to analyze the data as they see fit, generating peer review ratings of the analyses (based on methods, 

not results), evaluating the variation in effects among the different analyses, and producing the final 

manuscript. We estimate that this process, from the time of an in-principle acceptance of this stage 1 

Registered Report, will take 11 months (Table 1). The factor most likely to delay our timeline is the rate 

of completion of the original set of analyses by independent groups of scientists. 

 

 

Step 1: Select Datasets 

We will use two previously unpublished datasets, one from evolutionary biology and the other from 

ecology and conservation. 

 

Evolutionary ecology 

 

Our evolutionary ecology data set is relevant to a sub-discipline of life-history research which focuses on 

identifying costs and trade-offs associated with different phenotypic conditions. These data were 

derived from a brood-size manipulation experiment imposed on wild birds nesting in boxes provided by 

researchers in an intensively studied population. Understanding how the growth of nestlings is 

influenced by the numbers of siblings in the nest can give researchers insights into factors such as the 

evolution of clutch size, determination of provisioning rates by parents, and optimal levels of sibling 

competition (Vander Werf 1992, DeKogel 1997, Royle et al. 1999, Verhulst et al. 2006, Nicolaus et al. 

2009). Data analysts will be provided this data set and instructed to answer the following question: “To 

what extent is the growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with 

siblings?” 

 

Researchers conducted brood size manipulations and population monitoring of blue tits (Cyanistes 

caeruleus) at Wytham Wood, a 380 ha woodland in Oxfordshire, U.K (1º 20’W, 51º 47’N).  Researchers 

regularly checked approximately 1100 artificial nest boxes at the site and monitored the 330 to 450 blue 

tit pairs occupying those boxes in 2001-2003 during the experiments. Nearly all birds made only one 

breeding attempt during the April to June study period in a given year. At each blue tit nest, researchers 

recorded the date the first egg appeared, clutch size, and hatching date. For all chicks alive at age 14 

days, researchers measured mass and tarsus length and fitted a uniquely numbered, British Trust for 

Ornithology (BTO) aluminium leg ring. Researchers attempted to capture all adults at their nests 

between day 6 and day 14 of the chick-rearing period. For these captured adults, researchers measured 

mass, tarsus length, and wing length and fitted a uniquely numbered BTO (British Trust for Ornithology) 



leg ring. During the 2001-2003 breeding seasons, researchers manipulated brood sizes using cross 

fostering. They matched broods for hatching date and brood size and moved chicks between these 

paired nests one or two days after hatching. They sought to either enlarge or reduce all manipulated 

broods by approximately one fourth. To control for effects of being moved, each reduced brood had a 

portion of its brood replaced by chicks from the paired increased brood, and vice versa. Net 

manipulations varied from plus or minus four chicks in broods of 12 to 16 to plus or minus one chick in 

broods of 4 or 5.  Researchers left approximately one third of all broods unmanipulated. These 

unmanipulated broods were not selected systematically to match manipulated broods in clutch size or 

laying date. We have mass and tarsus length data from 3720 individual chicks divided among 167 

experimentally enlarged broods, 165 experimentally reduced broods, and 120 unmanipulated broods. 

The full list of variables included in the data set is available in Table S1 in the supplementary materials. 

 

Ecology and conservation 

Our ecology and conservation data set is relevant to a sub-discipline of conservation research which 

focuses on investigating how best to revegetate private land in agricultural landscapes. These data were 

collected on private land under the Bush Returns program, an incentive system where participants 

entered into a contract with the Goulburn Broken Catchment Management Authority and received 

annual payments if they executed predetermined restoration activities. This particular data set is based 

on a passive regeneration initiative, where livestock grazing was removed from the property in the 

hopes that the Eucalyptus spp. overstorey would regenerate without active (and expensive) planting. 

Analyses of some related data have been published (Miles 2008, Vesk et al. 2016) but those analyses do 

not address the question analysts will answer in our study. 

 

Researchers conducted three rounds of surveys at 18 sites across the Goulburn Broken catchment in 

northern Victoria, Australia in winter and spring 2006 and autumn 2007. In each survey period, a 

different set of 15 x 15 m quadrats were randomly allocated across each site within 60 m of existing tree 

canopies. The number of quadrats at each site depended on the size of the site, ranging from four at 

smaller sites to 11 at larger sites. The total number of quadrats surveyed across all sites and seasons was 

351. The number of Eucalytpus spp. seedlings was recorded in each quadrat along with information on 

the GPS location, aspect, tree canopy cover, distance to tree canopy, and position in the landscape. 

Ground layer plant species composition was recorded in three 0.5 x 0.5 m sub-quadrats within each 

quadrat. Subjective cover estimates of each species as well as bare ground, litter, rock and 

moss/lichen/soil crusts were recorded. Subsequently, this was augmented with information about the 

precipitation and solar radiation at each GPS location.  

 

Step 2: Recruitment and Initial Survey of Analysts 

Initiating authors (TP, HF, SN, EG, SG, PV, FF) created a publicly available document providing a general 

description of the project (osf.io/mn5aj/). The project will be advertised at conferences, via Twitter, 

using mailing lists for ecological societies (full scope of these lists is not fixed but will include Ecolog, 

Evoldir, and lists for the Environmental Decisions Group and Transparency in Ecology and Evolution), 

and via word of mouth. The target population is active ecology, conservation, or evolutionary biology 

researchers with a graduate degree (or currently studying for a graduate degree) in a relevant discipline. 



Researchers can choose to work independently or in a small team. For the sake of simplicity, we refer to 

these as ‘analysis teams’ though some may comprise one individual. Recruitment for this project is 

ongoing but we aim for a minimum of 12 analysis teams independently evaluating each dataset (see 

sample size justification below). We will simultaneously recruit volunteers to peer-review the analyses 

conducted by the other volunteers through the same channels. Our goal is to recruit a similar number of 

peer-reviewers and analysts, and to ask each peer reviewer to review a minimum of four analyses. If we 

are unable to recruit at least half the number of reviewers as analysis teams, we will ask analysts to 

serve also as reviewers (after they have completed their analyses). All analysts and reviewers will share 

co-authorship on this manuscript and will participate in the collaborative process of producing the final 

manuscript. All analysts will sign a consent (ethics) document (https://osf.io/xyp68/) approved by the 

Whitman College Institutional Review Board prior to being allowed to participate.  

 

We identified our minimum number of analyses per data set by considering the number of effects 

needed in a meta-analysis to generate an estimate of heterogeneity (τ2) with a 95% confidence interval 

that does not encompass zero. This minimum sample size is invariant regardless of τ2. This is because 

the same t-statistic value will be obtained by the same sample size regardless of variance (τ2). We see 

this by first examining the formula for the standard error, SE for variance, (τ2) or SE(τ2) assuming 

normality in an underlying distribution of effect sizes (Knight 2000): 

 

𝑆𝐸(𝜏2) =  √
2𝜏4

(𝑛 − 1)
 

 

and then rearranging the above formula to show how the t-statistic is independent of τ2, as seen below. 

  

𝑡 =
𝜏2

𝑆𝐸(𝜏2)
=  √

(𝑛 − 1)

2
 

 

We then find a minimum n = 12 according to this formula.  

 

Step 3: Primary Data Analyses 

Analysis teams will register and answer a demographic and expertise survey ( https://osf.io/seqzy/). We 

will then provide them with the dataset of their choice and request that they answer a specific research 

question. For the evolutionary biology dataset that question is “To what extent is the growth of nestling 

blue tits (Cyanistes caeruleus) influenced by competition with siblings?” and for the ecology dataset it is 

“How does grass cover influence Eucalyptus spp. seedling recruitment?” Once their analysis is complete, 

they will answer a structured survey (https://osf.io/neyc7/), providing analysis technique, explanations 

of their analytical choices, quantitative results, and a statement describing their conclusions. They will 

also upload their analysis files (including the data set as they formatted if for analysis and their analysis 

code [if applicable]) and a detailed journal-ready statistical methods section.  

 



Step 4: Peer Reviews of Analyses 

At minimum, each analysis will be evaluated by four different reviewers, and each volunteer peer-

reviewer will be randomly assigned methods sections from at least four analyst teams (the exact 

number will depend on the number of analysis teams and peer reviewers recruited). Each peer reviewer 

will register and answer a demographic and expertise survey identical to that asked of the analysts, 

except we will not ask about ‘team name’ since reviewers will not be working in teams. Reviewers will 

evaluate the methods of each of their assigned analyses one at a time in a sequence determined by the 

initiating authors (TP, HF, SN, EG, SG, PV, FF). The sequences will be systematically assigned so that, if 

possible, each analysis is allocated to each position in the sequence for at least one reviewer. For 

instance, if each reviewer is assigned four analyses to review, then each analysis will be the first analysis 

assigned to at least one reviewer, the second analysis assigned to another reviewer, the third analysis 

assigned to yet another reviewer, and the fourth analysis assigned to a fourth reviewer. Balancing the 

order in which reviewers see the analyses controls for order effects, e.g. a reviewer might be less critical 

of the first methods section they read than the last. 

 

The process for a single reviewer will be as follows. First, the reviewer will receive a description of the 

methods of a single analysis. This will include the narrative methods section, the analysis team’s answers 

to our survey questions regarding their methods, including analysis code, and the data set. The reviewer 

will then be asked, in an online survey (https://osf.io/4t36u/), to rate that analysis on a scale of 0-100 

based on this prompt: “Rate the overall appropriateness of this analysis to answer the research question 

([one of the two research questions inserted here]) with the available data. To help you calibrate your 

rating, please consider the following guidelines:  

100. A perfect analysis with no conceivable improvements from the reviewer 

75. An imperfect analysis but the needed changes are unlikely to dramatically alter outcomes 

50. A flawed analysis likely to produce either an unreliable estimate of the relationship or an over-

precise estimate of uncertainty  

25. A flawed analysis likely to produce an unreliable estimate of the relationship and an over-precise 

estimate of uncertainty  

0. A dangerously misleading analysis, certain to produce both an estimate that is wrong and a 

substantially over-precise estimate of uncertainty that places undue confidence in the incorrect 

estimate. 

*Please note that these values are meant to calibrate your ratings. We welcome ratings of any number 

between 0 and 100."  

After providing this rating, the reviewer will be presented with this prompt, in multiple-choice format: 

“Would the analytical methods presented produce an analysis that is (a) publishable as is, (b) 

publishable with minor revision, (c) publishable with major revision, (d) deeply flawed and 

unpublishable?” The reviewer will then be provided with a series of text boxes and the following 

prompts:  

“Please explain your ratings of this analysis. 

Please evaluate the choice of statistical analysis type. 

Please evaluate the process of choosing variables for and structuring the statistical model. 

Please evaluate the suitability of the variables included in (or excluded from) the statistical model. 



Please evaluate the suitability of the structure of the statistical model. 

Please evaluate choices to exclude or not exclude subsets of the data. 

Please evaluate any choices to transform data (or, if there were no transformations, but you think there 

should have been, please discuss that choice).”  

After submitting this review, a methods section from a second analysis will then be made available to 

the reviewer. This same sequence will be followed until all analyses allocated to a given reviewer have 

been provided and reviewed. After providing the final review, the reviewer will be simultaneously 

provided with all four (or more) methods sections that reviewer has just completed reviewing, the 

option to revise their original ratings, and a text box to provide an explanation. The invitation to revise 

the original ratings will be as follows: “If, now that you have seen all the analyses you are reviewing, you 

wish to revise your ratings of any of these analyses, you may do so now.” The text box will be prefaced 

with this prompt: “Please explain your choice to revise (or not to revise) your ratings.” 

 

Step 5: Evaluate Variation 

Initiating authors (TP, HF, SN, EG, SG, PV, FF) will conduct the analyses outlined in this section. We will 

describe the variation in model specification in several ways. We will calculate summary statistics 

describing variation among analysis, including mean, SD, and range of number of variables per model 

included as fixed effects, the number of interaction terms, the number of random effects, and the mean, 

SD, and range of sample sizes. We will also present the number of analyses in which each variable was 

included.  

 

We will summarize the variability in standardized effect sizes and predicted values of dependent 

variables among the individual analyses using standard random effects meta-analytic techniques. First, 

we will derive standardized effect sizes from each individual analysis. We will do this for all linear models 

or generalized linear models by converting the t value and the degree of freedom (df) associated with 

regression coefficients (e.g. the effect of the number of siblings [predictor] on growth [response] or the 

effect of grass cover [predictor] on seedling recruitment [response]) to the correlation coefficient, r, 

using the following:  

𝑟 = √
𝑡2

𝑡2 + 𝑑𝑓
 

This formula will work only if t values and df are from linear models or generalized linear models (GLMs; 

Nakagawa and Cuthill 2007). If, instead, linear mixed-effects models (LMMs) and generalized linear 

mixed-effects models (GLMMs) were used by a given analysis, the exact df cannot be estimated. 

However, adjusted df can be estimated, for example, using the Satterthwaite approximation of df, or dfS 

(note that SAS uses this approximation to obtain df for LMMs and GLMMs; Luke 2017). For analyses 

using either LMMs or GLMMs that do not produce dfS, we will obtain dfS by rerunning the same 

(G)LMMs using the lmer or glmer function in the lmerTest package in R (Kuznetsova et al. 2017). Then, 

we will use t values and dfS from the models to obtain r as per the formula above. All r and 

accompanying df (dfS) will be converted to Zr and its sampling variance; 1/(n – 3) where n = df + 1.  Any 

analyses from which we cannot derive a signed Zr, for instance one with a quadratic function in which 

the slope changes sign, will be excluded from the analyses of Fisher’s Zr. We expect such analyses will be 



rare. Regardless, as we describe below, we will generate a second set of standardized effects (predicted 

values) that can be derived from any explanatory model produced by these data.  

 

Besides Zr, which describes the strength of a relationship based on the amount of variation in a 

dependent variable explained by variation in an independent variable, we will also examine differences 

in the shape of the relationship between the independent and dependent variables. To accomplish this, 

we will derive a point estimate (predicted value) for the dependent variable of interest for each of three 

values of our primary independent variable (the 25th percentile, median, and 75th percentile), while 

setting the values of any co-variates at the corresponding quartiles (25th percentile, median, 75th 

percentile). We will use the 25th and 75th percentiles rather than minimum and maximum values to 

reduce the chance of occupying unrealistic parameter space. We will derive these predicted values from 

the model information provided by the individual analysts. All values (predictions) will be transformed to 

the original scale along with their standard errors (SE); the delta method (Ver Hoef 2012) will be used for 

the transformation of SE. We will use the square of the SE associated with predicted values as the 

sampling variance in the meta-analyses described below, and we will analyze these predicted values in 

exactly the same ways as we analyze Zr in the following analyses.  

 

We will plot individual effect size estimates (Zr) and predicted values of the dependent variable (y) and 

their corresponding 95% confidence / credible intervals in forest plots to allow visualization of the range 

and precision of effect size and predicted values. Further, we will include these estimates in random 

effects meta-analyses (Higgins et al. 2003, Borenstein et al. 2017) using the metafor package in R 

(Viechtbauer 2010): 

 

Zr ~ 1 + (1| analysis_identity) 

 

and  

 

ymedian / 25th / 75th ~ 1 + (1| analysis_identity)  

 

where y is the predicted for the dependent variable at the 25th percentile, median, or 75th percentile of 

the independent variables. The individual Zr effect sizes will be weighted with the inverse of sampling 

variance for Zr. The individual predicted values for dependent variable (y) will be weighted by the 

associated SE2. These analyses will provide an average Zr score or an average y with corresponding 95% 

confidence interval and will estimate two types of heterogeneity indices, τ2 and I2. The former, τ2 is the 

absolute measure of heterogeneity or the between-study variance (in our case, between-team variance) 

whereas I2 is a relative measure of heterogeneity.  We obtain the estimate of relative heterogeneity (I2) 

by dividing the between-analysis variance by the sum of between-analysis and within-analysis variance 

(sampling error variance). I2 is thus the proportion of variance that is due to heterogeneity as opposed 

to sampling error. When calculating I2, within-study variance is amalgamated across studies to create a 

“typical” within-study variance which serves as the sampling error variance (Higgins et al. 2003, 

Borenstein et al. 2017). Our goal here is to visualize and quantify the degree of variation among analyses 

in effect size estimates (Nakagawa and Cuthill 2007). We are not testing for statistical significance.  



 

Finally, we will assess the extent to which deviations from the meta-analytic mean by individual effect 

sizes (Zr) or the predicted values of the dependent variable (y) are explained by the peer-rating of each 

analysis team’s method section, by a measurement of the ‘uniqueness’ of the set of predictor variables 

included in each analysis, and possibly by the choice of whether or not to include random effects in the 

model. The deviation score, which serves as the dependent variable in these analyses, will be the 

absolute value of the difference between the meta-analytic mean Zr (or y) and the individual Zr (or y) 

estimate for each analysis. We will use the Box-Cox transformation on the absolute values of deviation 

scores to achieve an approximately normal distribution (c.f. Fanelli and Ioannidis 2013, Fanelli et al. 

2017: supplement). We will describe variation in this dependent variable with both a series of univariate 

analyses and a multivariate analysis. All these analyses will be general linear (mixed) models. These 

analyses are secondary to our estimation of variation in effect sizes described above. We wish to 

quantify relationships among variables, but we have no a priori expectation of effect size and we will not 

make dichotomous decisions about statistical significance.  

 

When examining the extent to which reviewer ratings (on a scale from 0 to 100) explain deviation from 

the average effect (or predicted value), each analysis will have been rated by multiple peer reviewers, so 

for each reviewer score to be included, we need to include each deviation score in the analysis multiple 

times. To account for the non-independence of multiple ratings of the same analysis, we will include 

analysis identity as a random effect in our generalized linear mixed model in the lme4 package in R 

(Bates et al. 2015). To account for potential differences among reviewers in their scoring of analyses, we 

will also include reviewer identity as a random effect: 

 

Box-Cox(abs(Deviation score)) ~ rating + (1|analysis_identity) + (1|reviewer_identity), 

 

where “Box-Cox” represents the Box-Cox and “abs” the absolute value. We will conduct a similar 

analysis with the four categories of reviewer ratings ((1) deeply flawed and unpublishable, (2) 

publishable with major revision, (3) publishable with minor revision, (4) publishable as is) set as ordinal 

predictors numbered as shown here. These analyses will also include random effects of analysis identity 

and reviewer identity. Both of these analyses (1: 1-100 ratings as the fixed effect, 2: categorical ratings 

as the fixed effects) will be conducted eight times for each data set, each of the four responses (Zr, y25th, 

ymedian, y75th) will be compared once to the initial ratings provided by the peer reviewers, and again based 

on the revised ratings provided by the peer reviewers.  

 

The next set of univariate analyses will seek to explain deviations from the mean effects based on a 

measure of the uniqueness of the set of variables included in each analysis. As a ‘uniqueness’ score, we 

will use Sorensen’s Similarity Index (an index typically used to compare species composition across 

sites), treating variables as species and individual analyses as sites. To generate an individual Sorensen’s 

value for each analysis requires calculating the pairwise Sorensen’s value for all pairs of analyses (of the 

same data set), and then taking the average across these Sorensen’s values for each analysis. We will 

calculate the Sorensen’s index values using the betapart package (Baselga et al. 2018) in R: 

 



𝛽𝑆𝑜𝑟𝑒𝑛𝑠𝑒𝑛 =  
𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

 

where a is the number of variables common to both models, b is the number of variables that occur in 

the first model but not in the second and c is the number of variables that occur in the second model 

but not in the first. We then will use the per-model average Sorensen’s index value as an independent 

variable to predict the deviation score in a general linear model, with no random effect since each 

analysis is included only once, in the stats package in R  (R_Core_Team 2019): 

 

Box-Cox(abs(Deviation score)) ~ βSorensen. 

 

Next, we will assess the relationship between the inclusion of random effects in the analysis and the 

deviation from the mean effect size. We anticipate that most analysts will use random effects in a mixed 

model framework, but if we are wrong, we want to evaluate the differences in outcomes when using 

random effects versus not using random effects. Thus if there are at least 5 analyses that do and 5 

analyses that do not include random effects, we will add a binary predictor variable “random effects 

included (yes/no)” to our set of univariate analyses and will add this predictor variable to our 

multivariate model described below.  

 

Finally, we will conduct a multivariate analysis with the five predictors described above (peer ratings 0-

100 and peer ratings of publishability 1-4; both original and revised and Sorensen’s index, plus a sixth, 

presence /absence of random effects, if sample size is sufficient) with random effects of analysis identity 

and reviewer identity in the lme4 package in R. We will use the revised peer ratings only: 

 

Box-Cox(abs(Deviation score)) ~ numerical_rating_1 + categorical_rating_1 +  numerical_rating_2 + 

categorical_rating_2 + βSorensen + (1|analysis_identity) + (1|reviewer_identity). 

 

We will conduct all the analyses described above eight times; for each of the four responses (Zr, y25th, 

ymedian, y75th) one time for each of the two data sets.   

 

We will publicly archive all relevant data, code, and materials on the Open Science Framework (osf.io). 

Archived data will include the original data sets distributed to all analysts, any edited versions of the 

data analyzed by individual groups, and the data we analyze with our meta-analyses, which include the 

effect sizes derive from separate analyses, the statistics describing variation in model structure among 

analyst groups, and the anonymized answers to our surveys of analysts and peer reviewers. Similarly, we 

will archive both the analysis code used for each individual analysis and the code from our meta-

analyses. We will also archive copies of our survey instruments from analysts and peer reviewers.  

 

Our rules for excluding data from our study are as follows. We will exclude from our synthesis any 

individual analysis submitted after we have completed peer review or those unaccompanied by analysis 

files that allow us to understand what the analysts did. We will also exclude any individual analysis that 

does not produce an outcome that can be interpreted as an answer to our primary question (as posed 



above) for the respective data set. For instance, this means that in the case of the data on blue tit chick 

growth, we would exclude any analysis that does not include something that can be interpreted as 

growth or size as a dependent (response) variable, and in the case of the Eucalyptus establishment data, 

we would exclude any analysis that does not include a measure of grass cover among the independent 

(predictor) variables. Also, as described above, any analysis that cannot produce an effect that can be 

converted to a signed Zr will be excluded from analyses of Zr.  

 

 

Step 6: Facilitated Discussion and Collaborative Write-Up of Manuscript 

Analysts and initiating authors will discuss the limitations, results, and implications of the study and 

collaborate on writing the final manuscript for review as a stage-2 Registered Report. 

 

Ethics, consent and permissions 

 

We have obtained permission to conduct this research from the Whitman College Institutional Review 

Board (IRB). As part of this permission, the IRB has approved the consent form (https://osf.io/xyp68/) 

that all participants will be asked to complete prior to joining the study. 

 

The authors declare that they have no competing interests.  
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Table 1. Timeline for completion of this project relative to timing of in-principle-acceptance (IPA) of 

stage 1 of the registered report.  

 

Project step Time to completion (after IPA) 

Select data sets completed 

Recruitment and initial survey of analysts Recruitment has begun. We will complete recruitment 
2 months after IPA 

Primary data analyses 4 months after IPA 

Peer review of analyses 6 months after IPA 

Evaluate variation 8 months after IPA  

Facilitated discussion and collaborative 
write-up 

11 months after IPA 

 

 

 

  



Supplement  

 

Table S1. The variable names and descriptions for all variables included in the blue tit data set.  

 

Variable name Variable description 

chick_ring_number Unique alpha numeric code on the aluminimum ring (band) fitted to 
the leg of the individual nestling. Each individual chick is listed in only 
one row in this datebase. 

hatch_year Year the nestling hatched 

hatch_nest_breed_ID Unique numeric code corresponding to the clutch of eggs from which 
this row's chick hatched. Each time a single clutch of eggs was laid in a 
given nest box, that clutch was assigned a breeding ID.  

hatch_Area Letter code corresponding to the area (a.k.a. 'compartment') of the 
study site in which the chick hatched 

hatch_Box Alpha numeric code corresponding to the individual nest box in which 
the chick was hatched. The code consists of the area code followed by 
the number of the nest box within that area. 

hatch_mom_Ring Unique alpha numeric code on the aluminimum ring (band) fitted to 
the leg of the adult female attending to the nest in which the chick 
hatched. This female can be assumed to have laid the eggs in this nest 
and thus to be the mother of this chick. 

hatch_nest_dad_Ring Unique alpha numeric code on the aluminimum ring (band) fitted to 
the leg of the adult male attending to the nest in which the chick 
hatched.  

Extra-pair_paternity Code indicating whether a molecular genetic paternity test identified 
the male attending the nest as the sire of the chick. "1" indicates a 
chick sired by a different ('extra-pair') male. "2" indicates a chick sired 
by the male attending the nest.  

Extra-pair_dad_ring For chicks identified as not sired by the adult male attending the nest, 
the identity (unique alpha numeric code on the aluminimum ring fitted 
to the leg) of the sire.  Note that for many 'extra-pair' sired chicks, the 
identity of the sire was unknown (because the sire had not been 
captured and genotyped by us).  

genetic_dad_ring_(WP_or_EP) Ring number for the sire of the chick (whether the sire was extra-pair 
or within-pair) 

hatch_nest_LD The date of the first egg was laid ('lay date') in the clutch from which 
the chick hatched. 1 = April 1.  

hatch_nest_CS The size of the clutch (number of eggs) from which the chick hatched. 

hatch_nest_OH The date the eggs began to hatch in the clutch from which the chick 
hatched. 1 = April 1.  



d0_hatch_nest_brood_size The number of live chicks in the nest of hatching immediately after 
eggs have hatched (can be fewer than clutch size if one or more eggs 
did not hatch) 

d14_hatch_nest_brood_size In the nest where the chick hatched, the number of live chicks in the 
nest at day 14 after hatching 

rear_nest_breed_ID Unique numeric code corresponding to the brood of chick with which 
this row's chick was reared. Each time a single clutch of eggs were laid 
in a given nest box, that clutch was assigned a breeding ID.  

rear_area Letter code corresponding to the area (a.k.a. 'compartment') of the 
study site in which the chick was reared 

rear_Box Alpha numeric code corresponding to the individual nest box in which 
the chick was reared. The code consists of the area code followed by 
the number of the nest box within that area. 

rear_mom_Ring Unique alpha numeric code on the aluminimum ring (band) fitted to 
the leg of the adult female attending to the nest in which the chick was 
reared. 

rear_dad_Ring Unique alpha numeric code on the aluminimum ring (band) fitted to 
the leg of the adult male attending to the nest in which the chick was 
reared.  

rear_nest_trt Nest experimental manipulation treatment code for the nest in which 
the chick was reared. '5' indicates a net increase in the number of 
chicks (brood size increased), '6' indicates a net decrease in the 
number of chicks (brood size decreased), '7' indicates no manipulation 
(no chicks added or removed).  

home_or_away Indicates whether the chick was reared in the nest in which it hatched 
or had been moved by an experimenter to another nest. 1 = home 
(reared in nest of hatching); 2 = away (reared in transplanted nest) 

rear_nest_LD The date of the first egg was laid ('lay date') in the nest in which the 
chick was reared. 1 = April 1.  

rear_nest_CS The size of the clutch (number of eggs) in the nest in which the chick 
was reared 

rear_nest_OH The date the eggs began to hatch in the nest in which the chick was 
reared. 1 = April 1.  

rear_d0_rear_nest_brood_size The number of live chicks in the nest of rearing immediately after eggs 
have hatched (before chicks were moved among nests for the 
experiment) 

rear_Cs_out Number of chicks removed by experimenters from nest in which the 
chick was reared 

rear_Cs_in Number of chicks added by experimenters to nest in which the chick 
was reared 

net_rearing_manipulation Net change in chick number in nest where chick reared 



rear_Cs_at_start_of_rearing Number of chicks in nest of rearing immediately following 
experimental chick removals and additions 

d14_rear_nest_brood_size In the nest where the chick was reared, the number of live chicks in 
the nest at day 14 after hatching 

number_chicks_fledged_from_rear_nest In the nest where the chick was reared, the number of chicks that 
survived to leave the nest 

Date_of_day14 date (1 = April 1) of 14th day after hatching 

day_14_tarsus_length Length of chick tarsometatarus in mm at day 14 after hatching 

day_14_weight mass of chick in grams at day 14 after hatching 

day14_measurer Code corresponding to the identity of the person who measured the 
chick at day 14. 

chick_sex_molec Sex of the chick based on molecular genetic analysis. 1 = female; 2 = 
male.  Not all chicks were sexed. 

chick_survival_to_first_breed_season Indicates whether the chick was documented as attempting to breed 
on the study site in any subsequent year 

 

 

 

  



Table S2. The variable names and descriptions for all variables included in the Eucalyptus recruitment 

data set.  

Variable name Variable description 

SurveyID Unique ID for each survey 

Date Date: DD/MM/YYYY 

Season Season 

Property The site that the surveys are associated with (identified by land owner's 
surname) 

Quadrat_no At each property/site in each sampling season the quadrats are numbered 1-n 
where n is the total number of quadrats/transects/sampling units undertaken 
at a site. N is dictated by the amount of relevant vegetation at each property.  

Easting  Easting coordinate 

Northing Northing coordinate 

Aspect Aspect at each quadrat. Is it facing north (n), south (s), east (e), west, north 
east (ne) etc 

Landscape_position Is the quadrat located on a slope, on the flat, at the crest of a hill, at the toe of 
the slope (where the slope levels out) 

ExoticAnnualGrass_cover Percentage cover of exotic annual grass per quadrat 

ExoticAnnualHerb_cover Percentage cover of exotic annual herbacious plants per quadrat 

ExoticPerennialHerb_cover Percentage cover of exotic perennial herbacious plants per quadrat 

ExoticPerennialGrass_cover Percentage cover of exotic perennial grass per quadrat 

ExoticShrub_cover Percentage cover of woody plants less than 2m tall per quadrat 

NativePerennialFern_cover Percentage cover of native perennial ferns per quadrat 

NativePerennialGrass_cover Percentage cover of native perennial grasses per quadrat 

NativePerennialHerb_cover Percentage cover of native perennial herbs per quadrat 

NativePerennialGraminoid_cover Percentage cover of native perennial grasslike species that are not technically 
grasses (e.g. lilies) per quadrat 

NativeShrub_cover Percentage cover of native woodland plants less than 2m tall per quadrat 

BareGround_cover Percentage cover of bare ground (ground not covered by plants of leaf litter) 
per quadrat 

Litter_cover Percentage cover of leaf litter per quadrat 

MossLichen_cover Percentage cover of moss and lichen per quadrat 

Rock_cover Percentage cover of rock (as a substrate, not including small, moveable 
pebbles on soil etc) per quadrat 

Euc_canopy_cover Percentage foliage projective cover by eucalypt canopy per quadrat 



Distance_to_Eucalypt_canopy(m) Distance between the quadrat and the closest edge of the nearest eucalypt 
canopy in meters 

euc_sdlgs0_50cm The number of eucalypt seedlings between 0 and 50cm tall per quadrat 

euc_sdlgs50cm-2m The number of eucalypt seedlings between 50cm and 2m tall per quadrat 

euc_sdlgs>2m The number of eucalypt seedlings greater than 2m tall per quadrat 

annual_precipitation Total annual precipitation at the quadrat easting and northing in the sample 
year. Derived from Bureau of Meteorology data 

precipitation_warmest_quarter Total precipitation in the warmest quarter of the year at the quadrat easting 
and northing in the sample year. Derived from Bureau of Meteorology data 

precipitation_coldest_quarter Total precipitation in the coldest quarter of the year at the quadrat easting 
and northing in the sample year. Derived from Bureau of Meteorology data 

PET Potential evapotranspiration at each quadrat easting and northing.  

MrVBF Multi‐resolution Valley Bottom Flatness index at the quadrat easting and 
northing : index of valley bottom flatness at scales from 10m to 10^5m to 
distinguish hillslopes from valley bottoms. Derived from a gridded MrVBF 
surface computed from a 20m DEM using an algorithm described in (Gallant & 
Dowling 2003) 

K_perc Estimated potassium (K) concentrations (%) in the top 30–45cm of the earth's 
crust at quadrat easting and northing. Derived from ‘GSV Wangaratta South 
Vic magnetic line data’ (1997) Geophysical Archive Data Delivery System, 
Department of Primary Industries, Victoria. Estimated from airborne Gamma 
radiometric spectrometry surveys 

Th_ppm Estimated thorium (Th) concentrations (ppm) in the top 30–45cm of the 
earth's crust at quadrat easting and northing. Derived from ‘GSV Wangaratta 
South Vic magnetic line data’ (1997) Geophysical Archive Data Delivery 
System, Department of Primary Industries, Victoria. Estimated from airborne 
Gamma radiometric spectrometry surveys 

U_ppm Estimated uranium (U) concentrations (ppm) in the top 30–45cm of the 
earth's crust at quadrat easting and northing. Derived from ‘GSV Wangaratta 
South Vic magnetic line data’ (1997) Geophysical Archive Data Delivery 
System, Department of Primary Industries, Victoria. Estimated from airborne 
Gamma radiometric spectrometry surveys 

SRad_Jan Incoming solar radiation (WH/m2) to quadrat easting and northing in January 
of the sample year. Computed using the solar radiation analysis tools in the 
Spatial Analyst extension for ArcGIS 9.2 Desktop. 

SRad_Jul Incoming solar radiation (WH/m2) to quadrat easting and northing in July of 
the sample year. Computed using the solar radiation analysis tools in the 
Spatial Analyst extension for ArcGIS 9.2 Desktop. 

 

 

 


