ADDITIONAL FILE 2

Formation of Epoxy beyeranes during the Auto-oxidation of *Ent*-beyer-15-en-19-al isolated from the

Essential oil of the Heartwood of Erythroxylum monogynum Roxb.

T. M. Samantha G. Tennakoon¹, G. M. Kamal Bandara Gunaherath^{2*}, K. Tuley Dayananda De Silva¹, Chayanika Padumadasa³, D. Siril

A. Wijesundara⁴, and Ajita Mahendra Abeysekera³

¹Research and Development Laboratory, Link Natural Products Pvt. Ltd. Malinda, Kapugoda, Sri Lanka

²Department of Chemistry, Open University of Sri Lanka, P. O. Box 21, Nugegoda, Sri Lanka

³Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

⁴National Institute of Fundamental Studies, Hantane, Kandy, Sri Lanka

Table of Content

- Table S1.
 Comparison of reported and observed ¹³C NMR spectroscopic data of *ent*-beyer-15-ene (1) and erythroxylol A (2)
- Table S2.Comparison of reported ¹H (200 MHz) and ¹³C (50 MHz) NMR Spectroscopic data with observed ¹H (400 MHz) and
¹³C (100 MHz) NMR Spectroscopic Data and Selected HMBC correlations of **5**
- Table S3.¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data and Selected HMBC correlations of 9

For compound 3

- **Figure S4.** ¹H NMR Spectrum (400 MHz) of **3** in CDCl₃
- **Figure S5.** 13 C NMR Spectrum (100 MHz) of **3** in CDCl₃
- Figure S6. DEPT 135 Spectrum (100 MHz) of 3 in CDCl₃
- Figure S7. HSQC Spectrum of 3 in CDCl₃
- Figure S8. HMBC Spectrum of 3 in CDCl₃

For compound 4

- **Figure S9.** ¹H NMR Spectrum (400 MHz) of 4 in CDCl₃
- **Figure S10.** ¹H NMR Spectrum (400 MHz) of **4** in CDCl₃ (Expansion $\delta 0.00 2.50$)
- Figure S11. ¹³C NMR Spectrum (100 MHz) of 4 in CDCl₃
- Figure S12. DEPT 135 Spectrum (100 MHz) of 4 in CDCl₃
- Figure S13. HSQC Spectrum of 4 in CDCl₃
- Figure S14. HMBC Spectrum of 4 in CDCl₃
- **Figure S15.** 1D Selective Gradient NOESY spectrum (400 MHz) of **4** in CDCl₃; Irradiation at δ 3.433

For compound 5

- Figure S16. ¹H NMR Spectrum (400 MHz) of 5 in CDCl₃
- **Figure S17.** ¹H NMR Spectrum (400 MHz) of **5** in CDCl₃ (Expansion $\delta 0.00 2.50$)
- Figure S18. ¹³C NMR Spectrum (100 MHz) of 5 in CDCl₃
- Figure S19. DEPT 135 Spectrum (100 MHz) of 5 in CDCl₃
- Figure S20. HSQC Spectrum of 5 in CDCl₃
- Figure S21. HMBC Spectrum of 5 in CDCl₃

For compound 6a and 6b

- Figure S22. ¹H NMR Spectrum (400 MHz) of 6a and 6b in CDCl₃
- **Figure S23.** ¹H NMR Spectrum (400 MHz) of **6a** and **6b** in CDCl₃ (Expansion $\delta 0.40 2.00$)
- Figure S24. ¹³C NMR Spectrum (100 MHz) of 6a and 6b in CDCl₃
- Figure S25. ¹³C NMR Spectrum (100 MHz) of **6a** and **6b** in CDCl₃ (Expansion δ 0.00 65.00)
- Figure S26. DEPT 135 Spectrum (100 MHz) of 6a and 6b in CDCl₃
- Figure S27. HSQC Spectrum of 6a and 6b in CDCl₃
- Figure S28. HMBC Spectrum of 6a and 6b in CDCl₃
- Figure S29. 1D Selective Gradient NOESY spectrum (400 MHz) of 6a and 6b in CDCl₃; Irradiation at δ 0.924
- Figure S30. 1D Selective Gradient NOESY spectrum (400 MHz) of 6a and 6b in CDCl₃; Irradiation at δ 1.134
- Figure S31. 1D Selective Gradient NOESY spectrum (400 MHz) of 6a and 6b in CDCl₃; Irradiation at δ 1.296
- Figure S32. ¹H NMR Spectrum (400 MHz) of 6a in CDCl₃
- **Figure S33.** ¹H NMR Spectrum (400 MHz) of **6a** in CDCl₃ (Expansion δ 0.40 3.50)
- Figure S34. ¹³C NMR Spectrum (100 MHz) of 6a in CDCl₃
- Figure S35. ¹H NMR Spectrum (400 MHz) of 6b in CDCl₃
- **Figure S36.** ¹H NMR Spectrum (400 MHz) of **6b** in CDCl₃ (Expansion $\delta 0.40 3.50$)
- Figure S37. ¹³C NMR Spectrum (100 MHz) of **6b** in CDCl₃

For compound 7

- Figure S38. ¹H NMR Spectrum (400 MHz) of 7 in CDCl₃
- Figure S39. ¹³C NMR Spectrum (100 MHz) of 7in CDCl₃
- Figure S40. DEPT 135 Spectrum (100 MHz) of 7 in CDCl₃
- Figure S41. HSQC Spectrum of 7 in CDCl₃
- Figure S42. HMBC Spectrum of 7 in CDCl₃
- **Figure S43.** 1D Selective Gradient NOESY spectrum (400 MHz) of **7** in CDCl₃; Irradiation at δ 0.856
- **Figure S44.** 1D Selective Gradient NOESY spectrum (400 MHz) of **7** in CDCl₃; Irradiation at δ 1.282

For compound 8

- **Figure S45.** ¹H NMR Spectrum (400 MHz) of **8** in CDCl₃
- Figure S46. ¹³C NMR Spectrum (100 MHz) of 8 in CDCl₃
- Figure S47. DEPT 135 Spectrum (100 MHz) of 8 in CDCl₃
- Figure S48. HSQC Spectrum of 8 in CDCl₃
- Figure S49. HMBC Spectrum of 8 in CDCl₃
- Figure S50. 1D Selective Gradient NOESY spectrum (400 MHz) of 8 in CDCl₃; Irradiation at δ 0.740
- **Figure S51.** 1D Selective Gradient NOESY spectrum (400 MHz) of **8** in CDCl₃; Irradiation at δ 1.117

For compound 9

- Figure S52. ¹H NMR Spectrum (400 MHz) of 9 in CDCl₃
- Figure S53. ¹³C NMR Spectrum (100 MHz) of 9 in CDCl₃
- Figure S54. DEPT 135 Spectrum (100 MHz) of 9 in CDCl₃
- Figure S55. HSQC Spectrum of 9 in CDCl₃
- Figure S56. HMBC Spectrum of 9 in CDCl₃
- Figure S57. 1D Selective Gradient NOESY spectrum (400 MHz) of 9 in CDCl₃; Irradiation at δ 1.136
- Figure S58. 1D Selective Gradient NOESY spectrum (400 MHz) of 9 in CDCl₃; Irradiation at δ 0.709

	Ent-bey	er-15-ene (1)	Erythro	Erythroxylol A (2)			
С	δ (reported) at	δ (observed) at	δ (reported) at	δ (observed) at			
	20 MHz	100 MHz	20 MHz	100 MHz			
1	39.3	39.3	39.2	39.2			
2	18.7	18.7	18.3	18.3			
3	42.2	42.2	35.7	35.6			
4	33.3	33.2	38.5	38.5			
5	56.1	56.1	56.8	56.8			
6	20.3	20.2	20.1	20.2			
7	37.4	37.36 or 37.41	37.3	37.7 or 37.2			
8	49.1	49.1	49.0	49.0			
9	53.0	52.9	53.0	52.9			
10	37.4	37.36 or 37.41	37.3	37.7 or 37.2			
11	20.5	20.3	20.3	20.3			
12	33.7	33.3	33.2	33.2			
13	43.6	43.7	43.6	43.6			
14	61.3	61.3	61.2	61.1			
15	135.2	135.4	135.0	135.0			
16	136.1	136.3	136.0	136.5			
17	25.0	25.1	24.9	24.9			
18	33.8	33.8	27.0	27.0			
19	22.0	22.1	65.5	65.5			
20	15.1	15.1	15.6	15.8			

S1. Comparison of reported and observed ¹³C NMR spectroscopic data of *ent*-beyer-15-ene (1) and erythroxylol A (2) in CDCl₃

С	Туре	$\delta_{\rm H}({\rm Rep})$	$\delta_{C}(\text{Rep})$	$\delta_{\rm H} \left({\rm Obs} \right)$	$\delta_{C}(Obs)$	HMBC
1	CH_2		39.6	0.90 m, 1.69 m	39.5	2
2	CH_2		19.3	1.41 m, 1.80 m	19.2	
3	CH_2		38.0	1.01 m, 2.15 m	37.9	1,5
4	С		43.9	-	43.8	
5	CH		57.2	1.10 m	57.0	4, 9, 10, 19
6	CH_2		21.6	1.82 m	21.6	5,8
7	CH_2		37.7	1.29 m, 1.66 m	37.7	
8	С		49.2	-	49.1	
9	CH		52.4	0.97 m	52.3	
10	С		37.7	-	37.9	
11	CH_2		20.5	1.53 m, 1.25	20.4	8, 12, 13
12	CH_2		33.2	1.25 m	33.1	
13	С		43.7	-	43.7	
14	CH_2		61.1	1.01 m, 1.45 m	61.0	7,9
15	CH	5.47 d (<i>J</i> =5.7 Hz)	134.8	5.73 d (<i>J</i> =5.7 Hz)	134.8	8,14
16	CH	5.76 d (<i>J</i> =5.7 Hz)	136.5	5.45 d (<i>J</i> =5.7 Hz)	136.5	8, 13, 14, 17
17	CH_3	1.01 s	24.9	0.99 s	24.9	16, 12, 13
18	CH ₃	1.26 s	29.1	1.24 s	29.1	3, 4, 5, 19
19	С		184.3	-	183.8	
20	CH ₃	0.69 s	13.8	0.67 s	13.8	1, 5, 9, 10

S2. Comparison of reported ¹H (200 MHz) and ¹³C (50 MHz) NMR Spectroscopic data with observed ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data and Selected HMBC correlations of **5**

С	$\delta_{\rm H}$	$\delta_{\rm C}$		HMBC
1	0.89 m, 1.57 m	38.4	CH_2	
2	1.51 m	19.9	CH_2	
3	1.33 m, 1.76 m	43.0	CH_2	2
4	-	72.4	С	
5	1.13 m	57.6	CH	
6	1.38 m, 1.75 m	19.1	CH_2	
7	1.37 m, 1.66 m	36.7	CH_2	5, 6
8	-	49.0	С	
9	1.05 m	52.6	CH	
10	-	38.0	С	
11	0.83 m, 1.27 m	20.4	CH_2	13
12	1.27 m	33.1	CH_2	14
13	-	43.7	С	
14	1.04 m, 1.45 m	61.1	CH_2	8, 9, 12, 13
15	5.68 d (<i>J</i> = 5.7 Hz)	135.0	CH	8, 13, 14, 16
16	5.46 d (<i>J</i> = 5.7 Hz)	136.5	CH	8, 13, 14, 15
17	1.00 s	24.9	CH_3	12, 13, 14, 16
18	-	-		
19	1.14 s	23.3	CH_3	3, 4, 5,
20	0.71 s	14.5	CH_3	1, 5, 9, 10

S3. ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data and Selected HMBC correlations of 9

S4. ¹H NMR Spectrum (400 MHz) of **3** in CDCl₃

S5. ¹³C NMR Spectrum (100 MHz) of **3** in CDCl₃

S6. DEPT 135 Spectrum (100 MHz) of $\mathbf{3}$ in CDCl₃

S7. HSQC Spectrum of $\mathbf{3}$ in CDCl₃

S8. HMBC Spectrum of **3** in CDCl₃

S9. ¹H NMR Spectrum (400 MHz) of **4** in CDCl₃

S10. ¹H NMR Spectrum (400 MHz) of **4** in CDCl₃ (Expansion δ 0.00 – 2.50)

S12. DEPT135 Spectrum (100 MHz) of in CDCl₃

S13. HSQC spectrum of in CDCl₃

S14. HMBC spectrum of $\mathbf{4}$ in CDCl₃

S15. 1D Selective Gradient NOESY spectrum (400 MHz) of **4** in CDCl₃; Irradiation at δ 3.433

S16. ¹H NMR Spectrum (400 MHz) of **5** in CDCl₃

S17. ¹H NMR Spectrum (400 MHz) of **5** in CDCl₃ (Expansion δ 0.00 – 2.50)

S19. DEPT 135 Spectrum (100 MHz) of $\mathbf{5}$ in CDCl₃

S20. HSQC Spectrum of in CDCl₃

S21. HMBC Spectrum of $\mathbf{5}$ in CDCl₃

S22. ¹H NMR Spectrum (400 MHz) of 6a and 6b in CDCl₃

S23. ¹H NMR Spectrum (400 MHz) of **6a** and **6b** in CDCl₃ (Expansion $\delta 0.40 - 2.00$)

S24. ¹³C NMR Spectrum (100 MHz) of **6a** and **6b** in CDCl₃

S25. ¹³C NMR Spectrum (100 MHz) of **6a** and **6b** in CDCl₃ (Expansion δ 0.00 – 65.00)

S26. DEPT 135 Spectrum (100 MHz) of **6a** and **6b** in CDCl₃

S27. HSQC Spectrum of **6a** and **6b** in CDCl₃

S28. HMBC Spectrum of **6a** and **6b** in CDCl₃

S29. 1D Selective Gradient NOESY spectrum (400 MHz) of **6a** and **6b** in CDCl₃; Irradiation at δ 0.924

S30. 1D Selective Gradient NOESY spectrum (400 MHz) of **6a** and **6b** in CDCl₃; Irradiation at δ 1.134

S31. 1D Selective Gradient NOESY spectrum (400 MHz) of **6a** and **6b** in CDCl₃; Irradiation at δ 1.296

S37. ¹³C NMR Spectrum (100 MHz) of **6b** in CDCl₃

S38. ¹H NMR Spectrum (400 MHz) of **7** in CDCl₃

S39. ¹³C NMR Spectrum (100 MHz) of **7** in CDCl₃

S40. DEPT 135 Spectrum (100 MHz) of in CDCl₃

S41. HSQC Spectrum of in CDCl₃

S42. HMBC Spectrum of in CDCl₃

S43. 1D Selective Gradient NOESY spectrum (400 MHz) of **7** in CDCl₃; Irradiation at δ 0.856

1D Selective Gradient NOESY freq: 0.856 ppm

						البر
PPM	6.0	5.0	4.0	3.0	2.0	1.0

0.856-

S44. 1D Selective Gradient NOESY spectrum (400 MHz) of **7** in CDCl₃; Irradiation at δ 1.282

1D Selective Gradient NOESY Freq: 1.282

S45. ¹H NMR Spectrum (400 MHz) of **8** in CDCl₃

S46. ¹³C NMR Spectrum (100 MHz) of **8** in CDCl₃

S47. DEPT135 Spectrum (100 MHz) of **8** in CDCl₃

S48. HSQC Spectrum of $\mathbf{8}$ in CDCl₃

S49. HMBC Spectrum of **8** in CDCl₃

S50. 1D Selective Gradient NOESY spectrum (400 MHz) of **8** in CDCl₃; irradiation at δ 0.740

1D Selective Gradient NOESY freq: 0.740ppm

S51. 1D Selective Gradient NOESY spectrum (400 MHz) of **8** in CDCl₃; Irradiation at δ 1.117

1D Selective Gradient NOESY freq: 1.117ppm

S52. ¹H NMR Spectrum (400 MHz) of **9** in CDCl₃

S53. ¹³C NMR Spectrum (100 MHz) of **9** in CDCl₃

S54. DEPT135 Spectrum (100 MHz) of **9** in CDCl₃

-

S56. HMBC Spectrum of **9** in CDCl₃

S57. 1D Selective Gradient NOESY spectrum (400 MHz) of **9** in CDCl₃; Irradiation at δ 0.708

1D Selective Gradient NOESY freq: 0.708 ppm

S58. 1D Selective Gradient NOESY spectrum (400 MHz) of **9** in CDCl₃; Irradiation at δ 1.135

1D Selective Gradient NOESY freq: 1.136 ppm

