
Supplementary Information for
Making Communities Show Respect for Order

V. Vasiliauskaite1, T.S. Evans

Centre for Complexity Science, and Theoretical Physics Group,
Imperial College London, SW7 2AZ, U.K.

2nd February 2020

Appendix

A Siblinarity antichain partition

We require a function which measures the quality of our partition of the set of nodes into our
“siblinarity antichains”. There are two main aspects to such a function: imposing the antichain
constraint and using defining node similarity using neighbourhood overlap.

Consider a directed graph (digraph) G = (V , E) where V is the set of nodes and E is the set
of edges, denoted (n,m) for an edge from node n to node m. Note we do not assume we have
a DAG in what follows and we shall comment on this further at the end of this section.

Nodes in an antichain satisfy the condition that they are not weakly connected, that is
there is no directed path between the two nodes in either direction. A directed path from n
to m is a sequence of nodes in which consecutive nodes are linked by an edge in the correct
direction [1]. That is {nj|j ∈ {0, 1, . . . , `}, n0 = n, n` = m, (nj, nj+1) ∈ E for j < `}. If there
is a directed path in our graph between two nodes n,m ∈ V in either direction i.e. the two
nodes are weakly connected, we will denote this as n ∼ m. An antichain A is a subset
of nodes which are not weakly connected to any of the other nodes in the same antichain, that
is if n,m ∈ A then n 6∼ m.

The second aspect is a similarity measure for two nodes, that is sim(n,m) is a function which
increases as the nodes n and m become more similar. Our aim is to use only the information
encoded in the network, information which is always available. There are still many options
but in our work here we will use the number of common neighbours. That is if N (n) is the
number of neighbours of node n then we use

sim(n,m) = |N (n) ∩N (m)| . (1)

In a directed graph such as our DAGs there are three natural sets of neighbours we can define.
We can use the predecessors of n, denoted N (pre)(n), that is the set of nodes with outgoing
edges that end at n. Alternatively, we can use the successors of node n, denoted N (suc)(n),
the set of nodes connected to with incoming edges that start from n. That is

N (pre)(n) = {m|(m,n) ∈ E} , N (suc)(n) = {m|(n,m) ∈ E} , (2)

and as illustrated in Fig. A1. Finally we can also use both sets at the same time and use
N (both)(n) = N (pre)(n) ∪N (suc)(n) as our neighbours set.

We then need to say if a particular value for the similarity of two nodes is large or small.
To do this we define a null model, typically a randomised version of our original network, and

1Corresponding Author.

1

http://www.imperial.ac.uk/people/t.evans
http://complexity.org.uk/
http://www3.imperial.ac.uk/theoreticalphysics

T
im
e

Figure A1: A figure to illustrate our neighbour set definitions.

we use the expected value in this null model for the similarity of two nodes n and m, which we
will denote as simnull.

Now we can put these elements together to define a function S that measures the quality of
a given partition of our network into antichains, denoted as the set A. We consider a partition
to be good if our antichains contain similar nodes. For instance in a family tree, we might
want to group the biological siblings of mother and father pair. There is no direct biological
connection between the siblings but they all have the same mother and father in common so
the overlap in their precursor neighbour set, N (pre) in the example shown in Fig. A2. We are

Figure A2: A family tree of Greek gods based on data from Wikipedia [2] (see section E.1).
Links are from parents to offspring. Colours of nodes and their shapes both show grouping
of deities using siblinarity based on common predecessors. For a comparison see the λ = 2
example in Fig. A3 which uses both successor and predecessor neighbours. White vertices
indicate nodes in an antichain community of size one. The size of a node indicates its total
degree.

aiming to find a partition of our set of nodes into antichains which we refer to as an antichain
partition and which we denote as A. That is each element of the partition A ∈ A is an
antichain.

Motivated by this family tree example, we call our quality function siblinarity and we

2

https://en.wikipedia.org/wiki/Family_tree_of_the_Greek_gods

denote this S(A) for a given antichain partition A. The generic form we choose is

S(A) =
∑
A∈A

∑
n∈A

∑
m∈A\n

(sim(n,m)− simnull(n,m)) . (3)

Note that there is no contribution from n = m in this expression. This leads to the result that
S(A) is zero for the trivial antichain partition, the one where each nodes is in an antichain by
itself, i.e. Atrivial where

Atrivial = {{v}|v ∈ V} . (4)

As noted there are many possible choices for the similarity function and the null model used
for comparison. In practice what we use here is given by (1) which gives us

S(A) =
∑
A∈A

∑
n∈A

∑
m∈A\n

(|N (n) ∩N (m)| − E(|N (n) ∩N (m)|)) . (5)

The outer sum is over all antichainsA in the antichain partition; the inner sum is over all pairs of
nodes in a given antichain A. A contribution to the total siblinarity from a pair of nodes n and
m is equal to the size of the intersection between their neighbours (predecessors or successors
or perhaps both) minus the expected value of the size of this intersection, E(|N (n) ∩ N (m)|).
The expected value depends on the choice of the null model.

For instance, we use a configuration model [1] as a simple null model in which the DAG
has been randomised maintaining the degree of every node and the directions of the edge but
otherwise the order of the original DAG has been lost. Consider one term in our expression and
so focus on a given pair of nodes n and m in the same antichain A. Then pick one of the |N (n)|
neighbours of node n, say node p. For simplicity we imagine that we are looking at successors
so that this neighbour p is at the end of an edge leaving n. In our simple configuration null
model this neighbouring node will have in-degree 〈(k(in))2〉/〈k(in)〉. That is neighbouring nodes
of node n have on average (〈(k(in))2〉 − 1)koutn /〈k(in)〉 incoming edges which could be at the end
of edges from node m. Given node m has koutm edges, the number of common neighbours may
be estimated to be

E(|N (n) ∩N (m)|) ≈ (〈(k(in))2〉 − 1)koutn koutm

〈k(in)〉|E|
. (6)

While this could be tried as a null model in our siblinarity expressions, we chose not to do so.
Rather we first rewrite our siblinarity in terms of matrices and then use that representation to
inspire our choice of null model.

We can rewrite (5) in terms of the adjacency matrix A for our DAG [3]. We use the con-
vention that Anm is the weight of the edge from n to m, with zero weight for no edge. Consider
Ã as an effective similarity matrix obtained from the product of the adjacency matrix and its
transpose. In the case where we have an unweighted DAG, Ã(suc) = A.AT is our successors-
based similarity matrix whereas Ã(pre) = AT.A is a similarity matrix based on predecessors,
so emulating the expressions in (2). Should we choose to use both sets of neighbours then we
simply use the sum of these two matrices Ã(both) = Ã(suc) + Ã(pre). Whichever of these effective
similarity matrices Ã we use, it means we may write our siblinarity function in the following
form:

S(A) =
∑
n

∑
m|m6=n

(
Ãnm −

κnκm
W

)
δ(An,Am) , where n ∈ An ∈ A , m ∈ Am ∈ A . (7)

3

Here the δ(An,Am) is one if n and m are in the same antichain (An = Am), zero if they are in
different antichains (An ∩Am = ∅). We define κn to be the effective strength of edges attached
to a node n in the similarity matrix Ã so κn =

∑
m Ãnm, while and W =

∑
n,m Ãnm is the total

weight of edges in the similarity matrix.
Note that the form of (7) means that we have chosen an explicit form for our null model.

This matrix form (7) has been chosen to emulate the modularity function [4] used as a measure
of the quality of a partition of nodes in a weighted undirected network with adjacency matrix
Ã. The null model we use is one in which we look at a “second-neighbour network” whose
adjacency matrix is Ã. This has the same nodes as the original DAG G with undirected
but weighted edges present between nodes if the are second neighbours in the original DAG.
These second neighbours in the original DAG G are defined by going one step forwards and
one step backwards if we are using successor neighbourhoods, and similarly for other choice of
neighbourhood N of (2). The null model is a configuration model [1] for this second-neighbour
network.

Also note that the form given here includes non-zero diagonal entries Ãnn with corresponding
contributions to the strength’s κn. For instance if the original DAG G is unweighted then Ãnn
is the number of (first) neighbours of node n in the DAG G. One could eliminate the self-
loops from the second-neighbour network producing a non-backtracking form for the adjacency
matrix say Ã(NBT) instead of Ã. For instance we could use Ã

(NBT,suc)
mn = (Ã(suc))mn − koutn δmn

instead of Ã(suc). We see no strong reason to use this non-backtracking form and have not
considered Ã(NBT) here. Equally, apart from algebraic simplicity, we can no reason not to use
the non-backtracking form Ã(NBT) but choose not to pursue this further here.

The big difference between siblinarity and modularity is that for our context, our partitions
are restricted to be antichains, something implicit in our A notation. Apart from this important
restriction, we are working on the modularity of a derived weighted but undirected network
with adjacency matrix given by Ã. If our original DAG was unweighted, this effective adjacency
matrix counts the number of ‘routes’ (not a path in the usual precise definition used in graph
theory) which consist of one forward and one backwards step on our original DAG.

A.1 Resolution

It is worth noting that we can control the resolution of obtained partition by scaling the null
model contribution in the siblinarity function (3) by a parameter λ. This mimics one way that
the resolution can be changed for community detection using modularity [5]. In our case we
suggest a modified form for the generic siblinarity function

S(A, λ) =
∑
A∈A

∑
n∈A

∑
m∈A\n

(sim(n,m)− λ simnull(n,m)) . (8)

This clearly reduces to the original equation, (5), when λ = 1. Large values of λ would yield
smaller antichains as adding nodes to an antichain produces a penalty. So for large enough λ,
the antichain partition which maximises the modified siblinarity will be where each antichain
contains just one node. When λ is zero, any two nodes which are not connected by a path
but share at least one shared neighbour will increase the siblinarity value if put in the same
antichain. So for small λ we expect the maximal modified siblinarity is likely to be something
that has the fewest number of antichains. In particular, a negative λ will allow nodes with no
path between them and with no common neighbours to to have larger siblinarity values if they
are in the same antichain rather than each node being in an antichain of one node.

4

To illustrate this idea, we find antichain communities by maximising a modified form of our
usual matrix siblinarity (7), namely

S(A, λ) =
∑
A∈A

∑
n∈A

∑
m∈A\n

(
Ãnm − λ

κnκm
W

)
. (9)

We use S(A, λ) to find antichain communities in the family tree of the Greek gods [2] (see
section E.1) shown in Fig. A3. As expected, when λ is small, such as in A, communities are
large and very close to height antichains. Larger values of λ in B and C produce more refined
partitions. The same behaviour can be sen in a very simple example in section B.

5

A

B

C

Figure A3: Antichains in the family tree of Greek Gods [2] (see section E.1), obtained by
maximising the modified siblinarity S(A, λ) (9) using different resolution parameters λ: in A
λ = 0.5, in B λ = 1.5, in C λ = 2. Different colours an shapes show different siblinarity
communities, obtained by considering both, future and past neighbours of nodes. As expected,
when λ is small, communities are large and very close to height antichains. Larger values of
λ produce more refined partitions. White vertices indicate nodes in an antichain community
of size one. Note that we can compare this λ = 2 example against the antichain communities
in Fig. A2 as the latter uses predecessors unlike here where both successor and predecessor
neighbours are used to evaluate siblinarity.

6

B A Simple example

Consider the network G shown in the centre of Fig. B4. Numbering the vertices from the

1

6

2 3

4
5

2

2

2

1

2

4

3

5

6

1

6

23 4 5

1
1

1

1

1 1

H for A2

{{1}, {2, 3}, {4, 5}, {6}}.
G H for A3

{{1}, {2, 5}, {3, 4}, {6}}.

Figure B4: In the centre the simple example G considered in the text. On the left is the reduced
network G̃2 based on the height antichain partition A2 of (15). On the right is the reduced
network G̃3 based on the antichain partition A3 of (17). Note that this last antichain partition
A3 produces a reduced network which is a directed graph with cycles. In the networks on the
left and right, the numbers in squares indicate the weight of the nearest edge. The central
network is unweighted. For the reduced networks on the left and right, the ovals are the nodes
in the centre but within they show which vertices were merged to form the new node in the
reduced graph.

bottom up we have edges (1, 2), (1, 3), (2, 4), (3, 5), (4, 6), and (5, 6) where (m,n) is an edge
from vertex m to vertex n. Using a convention that Amn is an edge from m to n we have that
columns are labelled by n and rows are labelled by m. So G in Fig. B4 has adjacency matrix

A =


0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 (10)

In this example we will also use the following definition of siblinarity

Ŝ(A, λ) =
∑
A∈A

∑
n∈A

∑
m∈A

(
Ãnm − λ

κnκm
W

)
, (11)

κn :=
∑
m

Ãnm , W =
∑
n,m

Ãnm .

Note that we are not excluding m = n in this definition of siblinarity Ŝ(A, λ) (with Ŝ(A) =
Ŝ(A, λ = 1)) unlike the definition of S(A) of (9). The difference is a constant independent of

7

A. Since S(A) of (11) is zero for the trivial antichain partition Atrivial of (4), in which every
node is placed in their own element of the partition, this difference is equal to the value of Ŝ(A)
for that trivial antichain partition. In our case this is Ŝ(A1) below. We will choose to use a
successor form of the two-step matrix in (11), that is Ã(suc) = A.AT, so that

Ã(suc) =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 0

 (12)

Each vertex forms on antichain

Now suppose we use this for a partition where each element of the partition is a single vertex.
This is always an antichain partition. Here we have

A1 = {{1}, {2}, {3}, {4}, {5}, {6}} (13)

and we find that the siblinarity value is

Ŝ(A1, λ) =

(
2− λ2.2

8

)
+

(
1− λ1.1

8

)
+

(
1− λ1.1

8

)
+

(
1− λ2.2

8

)
+

(
1− λ2.2

8

)
+ 0

= 6− λ14

8
. (14)

The Height Antichain Partition

The height antichain partition (same as the depth antichain partition here) is

A2 = {{1}, {2, 3}, {4, 5}, {6}} . (15)

This has siblinarity equal to

Ŝ(A2, λ) =

(
2− λ2.2

8

)
+

(
2− λ3.

1.1

8

)
+

(
4− λ3.

2.2

8

)
+ 0 = 6− λ19

8
. (16)

Antichain Partition with Cyclic Derived Graph

For an antichain partition of

A3 = {{1}, {2, 5}, {3, 4}, {6}} (17)

the derived graph G̃ will be directed but not cyclic as shown in Fig. B4. The siblinarity for
this antichain partition is

Ŝ(A3, λ) =

(
2− λ2.2

8

)
+

(
2− λ[

1.1

8
+

1.2

8
+

2.2

8
]

)
+

(
2− λ[

1.1

8
+

1.2

8
+

2.2

8
]

)
+ 0

= 6− λ18

8
. (18)

8

Antichain Partition Four

Another possible antichain partition is

A4 = {{1}, {2}, {3}, {4, 5}, {6}} (19)

This gives

Ŝ(A4, λ) =

(
2− λ2.2

8

)
+

(
1− λ1.1

8

)
+

(
1− λ1.1

8

)
+

(
3− λ3.

2.2

8

)
+ 0 = 7− λ18

8
. (20)

Antichain Partition Five

The fifth antichain partition we consider is

A5 = {{1}, {2, 3}, {4}, {5}, {6}} (21)

This is similar to antichain four but it is not related by any symmetry so gives a different result.

Ŝ(A5, λ) =

(
2− λ2.2

8

)
+

(
2− λ3.

1.1

8

)
+

(
1− λ2.2

8

)
+

(
1− λ2.2

8

)
+ 0 = 6− λ15

8
. (22)

Antichain Partition Six and Seven

The last two possible antichain partitions have the same siblinarity by symmetry

A6 = {{1}, {2, 5}, {3}, {4}, {6}} (23)

and
A7 = {{1}, {2}, {3, 4}, {5}, {6}} (24)

These have siblinarity values of

Ŝ(A6, λ) = Ŝ(A7, λ) =

(
2− λ2.2

8

)
+

(
1− λ1.1

8

)
+

(
2− λ[

1.1

8
+

1.2

8
+

2.2

8
]

)
+

(
1− λ2.2

8

)
+ 0

= 6− λ16

8
. (25)

Siblinarity Maximisation

The results for all the possible antichains for the DAG G of Fig. B4 are summarised in Table
B1. The best partition for maximum siblinarity is not in fact the height partition A2, (this
is second best) but is the fourth partition A4. This because the two antichains {2} and {3}
are preferred to the single antichain {2, 3} and this is because nodes 2 and 3 have no common
successors. Had we used a siblinarity that involved predecessors in some way then {2, 3} would
have been preferred.

When we introduce the resolution parameter λ in (9), the modified siblinarity gives the
height antichain community A2 (15), a maximal antichain partition, as the best solution for
λ < 0. For 0 < λ < 2 we find the fourth antichain A4 of (19) is the optimal. The trivial partition
with each antichain containing one node, A1 of (13), has the largest modified siblinarity for
λ > 2.

9

Antichain Partition Siblinarity Mod.Siblinarity

Ŝ(A) S(A) Ŝ(A, λ) S(A, λ)

A1 {{1}, {2}, {3}, {4}, {5}, {6}} 34
8

0
8

6− λ14
8

0

A2 {{1}, {2, 3}, {4, 5}, {6}} 37
8

+3
8

7− λ19
8

1− λ5
8

A3 {{1}, {2, 5}, {3, 4}, {6}} 30
8

-4
8

6− λ18
8

−λ4
8

A4 {{1}, {2}, {3}, {4, 5}, {6}} 38
8

+4
8

7− λ18
8

1− λ4
8

A5 {{1}, {2, 3}, {4}, {5}, {6}} 33
8

-1
8

6− λ15
8

−λ1
8

A6 {{1}, {2, 5}, {3}, {4}, {6}} 32
8

-2
8

6− λ16
8

−λ2
8

A7 {{1}, {2}, {3, 4}, {5}, {6}} 32
8

-4
8

6− λ16
8

−λ2
8

Table B1: A table of siblinarity values for the different antichain partitions of the graph G of
Fig. B4. We are using the modified versions of siblinarity with a resolution parameter λ, that
is S(A, λ) of (9) and Ŝ(A, λ) of (11). The λ = 1 values are also given as S(A) = S(A, λ = 1)
and Ŝ(A) = Ŝ(A, λ = 1). Note that the values of siblinarity S(A, λ) and Ŝ(A, λ) are related
through the value for the largest (trivial) partition A1 since S(A, λ) = Ŝ(A, λ)− Ŝ(A1, λ).

C Louvain Siblinarity Optimisation

Having defined a quality function, we can look for a partition of our nodes into antichains, A,
which maximises the siblinarity S(A). This task faces the same challenges as most network
community detection methods; there are many local minima and only approximate solutions
can be found in a reasonable amount of computational time. Here, we will discuss how to adapt
the Louvain algorithm [6] which is a widely used and successful methods to find communities
in networks which maximise modularity. Emulating the Louvain algorithm, our siblinarity
maximisation method is an iterative greedy algorithm in which each iteration has two phases.

In the first phase of our algorithm, we start with an initial partition into antichains in which
each node is assigned to its own antichain. At each subsequent step, we try to move a single node
n from its current antichain, Aa, to another antichain Ab, always choosing the configuration
which maximises the siblinarity, even if that means leaving the antichains unchanged. In our
implementation, we visit each node in a fixed sequence. Once the sequence is exhausted, we
sweep through the same sequence once again. This process is continued until there are no more
changes in the optimal antichain partition possible whatever node n we choose to examine.
That is when changing the antichain partition by moving just one node can not increase the
siblinarity. This marks the end of the first phase. In principle, we can also stop this first phase
at any point as every new antichain partition is, by definition better than the last. So in our
algorithm we also stop this phase if we have completed a given number of sweeps since the
second phase is almost certain to simplify the problem and so speed up subsequent iterations.

For each node n we choose for a possible move, the change in siblinarity is calculated for
removing n from its current antichain, Aa, and placing in a new antichain Ab. It is important
to enforce the constraint that the node n must not be connected to any existing node m in
the potential new antichain Ab, i.e. we want Ab ∪ {n} to be an antichain. In our algorithm,
we further limit the choice of which new antichains Ab we examine. If we are using siblinarity

10

defined using a similarity measure using a neighbourhood set N (n) for our nodes n, then we
look for antichains Ab which contain at least one node m ∈ Ab which has a non-trivial similarity
measure with our chosen node n, i.e. for us we require |N (n) ∩ N (m)| > 0. These potential
new antichains for node n are easy to find as this involves a two-step walk on the network
starting from n. If we use a neighbourhood based on successors, that is N (suc)(n), then we only
look at antichains Ab which contain a predecessor m of a successor of n. We will call these
successor antichains. If we look only at predecessors neighbourhoods and so use N (pre)(n)
for our neighbourhood sets, we shall refer to the resulting antichain partitions as predecessor
antichains. There is only one other case we examine, and that is we also check the case where
we allow n to join a new antichain consisting of the node n alone, i.e. Ab = ∅.

The change in siblinarity ∆S is given by

∆S(Aa,Ab → Aa\n,Ab ∪ {n}) =
∑
m∈Ab

(|N (n) ∩N (m)| − E(|N (n) ∩N (m)|))

−
∑

q∈Aa\n

(|N (n) ∩N (q)| − E(|N (n) ∩N (q)|)) ,

provided n 6∼ Ab .

(26)

The first term is the contribution from the addition of node n to the antichain Ab, while the
second term is the effect of the removal of node n from its current antichain Aa. Note the
condition that n is not connected to any node in the existing antichain Ab which we denote as
n 6∼ Ab. This is needed to ensure Ab remains an antichain when n is added. Computationally it
requires a check if there are no paths in the network between any pair of nodes of an antichain.
This can be done in several ways. For instance, an entry A′

nm of a matrix A′ =
∑`

i=1Amatr
i,

where ` is the length of the longest path in the network, is only zero if there is no path from n
to m. So if A′

nm + A′
mn = 0, the nodes n,m can be in the same antichain.

In the matrix notation of (7), the change in siblinarity is given by

∆S(Aa,Ab → Aa\n,Ab ∪ {n}) =
∑
m∈Ab

(
Ãnm −

κnκm
W

)
−
∑

q∈Aa\n

(
Ãnq −

κnκq
W

)
provided n 6∼ Ab .

(27)

In the second phase we create an induced graph H = {VH, EH} from the original graph G
and the antichain partition A left at the end of phase one. Each node a ∈ VH in this induced
graph H represents a single antichain, Aa ∈ A, as given at the end of the previous phase. The
edges between nodes of induced graph are given a weight equal to the sum of the weights of all
the edges between the equivalent antichain nodes in the original graph G of the induced graph.
For instance, if there were kba edges all of weight 1 pointing from nodes in the antichain Aa
to the antichain Ab at the end of phase one, there would be a directed edge (a, b) ∈ EH in the
induced graph with weight equal to kba in the induced graph2. In terms of matrices, if Hba is
equal to the weight of the edge from node a to b in the adjacency matrix for the induced graph,
then we have that

Hba =
∑
m∈Aa

∑
n∈Ab

Anm . (28)

2Induced graph does not have to be a DAG: antichains are possible in graphs with cycles as Fig. B4 shows.
By definition, an antichain is a subset of nodes such that there is no path between any of two of them in this
subset. This is perfectly valid in any graph, however, in some they are more interesting than in others.

11

Once the induced graph is created, the algorithm continues by applying finding an antichain
partition of the induced graph using siblinarity, starting with the phase one. The algorithm
continues until there is no substantial increase in the siblinarity function (5).

D Basic Statistics on Antichains

One way to look at antichains is to look at bipartite network B(A) associated with each an-
tichain. For each antichain A of a graph G = (V , E), we define a bipartite network B(A). The
first type of vertex in the bipartite network are simply those in the antichain itself, A. The
second type of vertex in B(A) is the set of all neighbours of the antichain vertices, that is

N (A) = ∪v∈AN (suc)(v) . (29)

An edge of the bipartite graph B(A) is present if there is a corresponding connection between
a given vertex in the antichain A to any of its neighbours, any vertex in N (A)

E(A) = {(v, n)|n ∈ N (A), v ∈ A, (v, n) ∈ E} ∪ {(n, v)|n ∈ N (A), v ∈ A, (v, n) ∈ E} . (30)

In practice, we also remove loosely connected neighbour nodes but for simplicity we will not
indicate that in our definitions here. This gives us B(A) = (A ∪N (A), E(A)).

There are many possible network measurements we can make on each bipartite graph which
can help us understand the nature of the antichains found in any example. In our work we
focussed on some of the simplest measures.

• |A| — The size of an antichain, i.e. the number of nodes in an antichain.

• |N | — The number of neighbours of an antichain.

• 〈k〉 — The average number of neighbours of nodes in an antichain.

〈k〉A =
|E(A)|
|A|

(31)

• σ(k)A — The standard deviation of the number of neighbours of nodes in an antichain.

σ(k)A =

√∑
n∈A(kn − 〈k〉A)

|A| − 1
(32)

• 〈k〉/|N | = |E(A)|
|A||N | — This is the density of the bipartite graph, the number of edges divided

by the maximum number possible.

The average degree and standard deviation of degree of nodes in the antichain, 〈k〉 and σ(k),
give us a picture of how the even the connections between antichain nodes and their neighbours
are. If 〈k〉 ≈ |N | and σ(k) ≈ 0, we know that nodes of very similar degrees are joined together
in an antichain, and their neighbourhoods are largely overlapping.

The ratio between 〈k〉 and |N | tell us how similar our bipartite graph is to a sparse “zig-
zag” pattern. If 〈k〉 is small in comparison to N , then we can expect small overlap overall
between all nodes in the antichain. This statistic approaches 1 if every node in the antichain is
connected to every neighbour.

12

E Additional Examples of Siblinarity and Data

E.1 Greek Gods

We have named the function used to find antichain partitions “siblinarity” using the analogy
with a family tree. We use the number of common neighbours to link nodes in an antichain
just as siblings share biological parents. Since family trees based on biological parentage are
predominantly trees, directed acyclic graphs but which have few if any loops in the undirected
version, we have looked to fiction to provide a more interesting example of a family tree. We
have taken information on Greek gods from Wikipedia [2] with each node representing a Greek
god with edges from a god to a child. Fig. A2 shows the results of applying our siblinarity
clustering siblinarity based on common predecessors to this data set. See [7] for the original
data.

E.2 Python Dependencies

Many software programmes can be extended by adding packages, extra programmes which
extend the functionality of the core package. As the number of packages grows, some of the
added packages start to use the functionality of some of the other packages added to the original
core application. In order to ensure that each package can run correctly, there is usually a system
to noting the dependencies of each package, that is, what other packages are required in order
to run any one package.

A good example of such an software ‘ecosystem’ is the computer language python [8]. The
PyPI repository [9] of packages for python records over 180,000 projects at the time of writing.
To illustrate the principle, we used a python python installation on one of the author’s machines
in 2019. We used V.Naik’s pipdeptree [10] (itself a python package listed on PyPI) to extract
the directed acyclic graph representing the package dependency DAG. Each node is a package
and we add a link from the parent package to the sibling, where the sibling package is requires
the installation of the parent in order to work. The results are shown in Fig. E5 and the data
used is provide on [7].

This illustrates several of the points made elsewhere. For instance, the scipy, pandas, and
matplotlib packages, bright red nodes in the second and third layer from the top in Fig. E5,
are in the same antichain cluster. These are often used for scientific analysis but they provide
different functionality: scientific functions, data handling and plotting respectively. They share
many predecessors, such as numpy, since they all need to handle large quantities of numerical
values efficiently. It is interesting to see that these three packages are not all at the same height
so a height based clustering would not put them together. On the other hand sphinx (a tool
for producing documentation seen on the right of Fig. E5, coloured in bright green) is at the
same height as pandas, and matplotlib (bright red nodes in Fig. E5, next to sphinx) but is
placed in a different cluster as the packages share so few common predecessors.

13

https://en.wikipedia.org/wiki/Family_tree_of_the_Greek_gods
https://www.python.org/
https://pypi.org/
https://github.com/naiquevin/pipdeptree

Figure E5: The dependencies of python packages on one of the author’s machines in 2019.
Each node is a package. Links are to the dependent package and are from the parent pack-
age needed for the siblings to function, no transitive reduction has been performed. Colours
indicate the different antichain communities found using siblinarity based on both successors
and predecessors. White indicates a node in a cluster by itself. The size of the node and the
size of the labels is related to the degree of each node. The vertical positioning is given by the
depth of a node with small variations in the top two depths to improve visibility. An electronic
version of this file is available on [7] which will allow readers to see the names of packages with
small labels.

14

https://www.python.org/

F Price Model with Subject Fields

The Price model for citation networks [11] produces a DAG with a fat-tailed (power-law)
distribution for the out-degree of nodes in our conventions which represents the citation count
of papers. We modify the Price model by assigning each paper to a ‘field’ and the edges,
citations between papers, are biased so they are usually between papers in the same field.
While an unrealistic model of citation networks in many ways, it contains three key features
of real citation networks: the order of papers imposed by time, the fat-tailed citation count
distribution, and the preference of most papers to cite papers within a similar field. We use it
as a DAG with a planted partition to enable us to make controlled comparisons between the
different community detection approaches discussed.

The model defines a sequence of networks G(t) where t is a positive integer playing the role
of time and which gives us an order to the nodes in our networks. Each graph G(t) has t nodes
with vertex set V(t) and edge set E(t). In our notation, the node u(s) is always the node added
at step s in the process, so u(s) ∈ V(t) provided 0 < s ≤ t.

The nodes in these networks are also partitioned into different fields, that is each node
u(t) is in one of F fields. The fields will be labelled by integers between 0 and (F − 1) with
f(t) ∈ {0, 1 . . . , (F − 1) denoting the field of node u(t). This creates a sequence of partitions
F(t) of our nodes where F(t) = {Ff (t)|f ∈ {0, 1, . . . , (F − 1)}} and Ff (t) ⊆ V(t). A node u(s),
for 0 < s ≤ t, belongs to a element Ff(s)(t) ∈ F(t), the set of papers at time t in the same field
f(s) as the paper published at time s.

To create the next graph in the sequence, G(t+ 1), we first add a new node u(t+ 1) to the
vertex set, so V(t + 1) = V(t) ∪ {ut+1}. This new node is assigned to f chosen uniformly at
random from the set of F possible field labels.

We now add m directed edges to this new node v(t + 1) from existing nodes u(s) where
s < t. To encode the “cumulative advantage” principle of Price, that is the higher the current
citation count of a paper the more likely it is to be cited, we can chose nodes u(s) from the
existing nodes V(t) in the network G(t) with probability Π(CA)(t, s) defined as3

Π(CA)(t, s) =
kout(t, s) + 1

|V(t)|+ |E(t)|
. (33)

Here kout(t, s) is the number of outgoing edges from node u(s) in G(t), the network at time t.
In our conventions, these edges represent citations from later papers to the paper published at
time s. The planted partition representing the fields is used on top of the cumulative advantage
in Π(CA)(t, s) by ensuring that a fraction φ of the edges are chosen to lie between nodes in the
same field. So the overall probability for choosing an existing node u(s) as the source of an
edge to new node v(t) is, to a good approximation4,

Π(t, s) ≈
(
φFδ(f(s), f(t+ 1)) + (1− φ)

F

(F − 1)
(1− δ(f(s), f(t+ 1)))

)
Π(CA)(t, s) .(34)

Note that we also impose the constraint that there is at most only one edge between any
two nodes and we choose the initial graph to be a transitively complete graph of size m + 1.
Neither of these constraints will have any significant effect on the measurements we make for
the large networks we use in our work here.

3Other forms linear in kout(t, s) are also easy to work with (for example see [1]), but these variations are not
our focus here. We chose to follow the same form as used in Price’s original paper.

4For instance, we have assumed that the fraction of nodes in any one field is always 1/F and that the degree
distribution is the same for all fields at all times. These are good approximations at later times.

15

G Performance of the algorithm

We studied several metrics of the computational performance of our algorithm. Our current
Python implementation can be found alongside the data in the Figshare repository [7]. In
particular, we looked at the time and memory requirements of the algorithm.

While the runtime depends on the topology of the particular network, we found that our
implementation worked for graphs composed of thousands of nodes in a feasible timeframe on a
standard desktop computer. In Fig. G6 we show the scaling of time consumption as the input
graph size is increased. Here the networks were created using the Price model with subject
fields, described in Section 3.2. The longest time to run the code for a network of 9,000 nodes
was 1003s, however, we found the variation in the runtime increases as the input graph becomes
larger.

0 2000 4000 6000 8000
Number of nodes

0

200

400

600

800

Ru
nt

im
e,

 s

Figure G6: Runtime of an algorithm, for a given size of a network, where the input network
is the Price model with fields. In all networks, each node attaches 5 edges to older nodes and
8 out of 10 times a node chooses to connect to another node in its own field. There are three
fields in total. For each value of the number of nodes, 10 networks were created.

To estimate the time and memory needed to find siblinarity communities, we recognise there
are two aspects to the problem. The first aspect is that we are using a Louvain type algorithm,
a type of greedy optimisation, to optimise siblinarity. This appears to run in O(N ln(N)) for a
network of N nodes but we have been unable to find a published study to back this up. Given
every neighbour of every node is checked, it seems more likely to be O(E ln(N)) for a network
of N nodes and E edges. In our case, we use our two-step matrix Ã which has the same number
of nodes but far more edges Ẽ than the DAG so the edges will scale as Ẽ ∼ 〈kout〉〈k(in)〉N in
terms of the average in- and out-degree of the DAG of N nodes. In terms of memory, we need
to store the information in the similarity matrix Ã which will scale with the number of edges
stored for sparse cases, O(Ẽ) ≈ O((〈kout〉)2N)) (as 〈kout〉 = 〈k(in)〉) with an upper bound of
O(N2) for dense matrices.

The largest difference between the siblinarity optimisation code and the modularity opti-
misation is that we need to do an extra check for the weak connectivity of two nodes m and n
before placing them into the same siblinarity community. In practice, we found that performing
this check is feasible by directly checking the networkx graph object each time, storing no extra
information but require small searches to be performed at each step giving us a time penalty.

In theory we could impose the path constraint needed for antichains in another way and we
will use this to provide an estimate for the time requirement of our method. In order to record

16

the information about node connectivity for a network with adjacency matrix A, we can define
a new matrix P where

P =
`max∑
α=1

[A]α . (35)

Here Pmn is the number of paths of any length from node n to mode m. Here `max is the longest
path length in the DAG (always finite for a finite DAG and often O(ln(N))). In practice we
only need to know if entries are zero or not as only if Pmn = 0 and Pnm = 0, can n and m be
placed in the same antichain. If we use this approach and define matrix P then the memory
requirements will always be O(N2) as this is a dense matrix. In terms of time, this extra step
to find P would require `max matrix multiplications if we used matrix multiplication. With
upper triangular matrices, this could be fast. However, given that this is a DAG, finding one
path (not all paths) from one node to any others, all that is required here, and that will take
O(N + E) using a breadth or depth first search in a DAG of N nodes and E edges. So at
worst finding the zeros in matrix P, that is finding which pairs of nodes are connected, will
take O((1 + 〈kout〉)N2) in time.

Putting this together, it appears that the memory requirements will always scale as O(N2)
but the time requirements have an lower bound of O(〈kout〉N ln(N)) and an upper bound of
O(〈kout〉N2).

17

H Resolution

As siblinarity optimisation is closely related to modularity, we should consider issues which arise
when partitioning a network using modularity optimisation. In particular, to use siblinarity
appropriately one must assess which resolutions reveal meaningful siblinarity communities. One
way to achieve this in practice is to study the stability of a partition at a given scale (resolution),
something studied extensively for algorithms based on modularity optimisation, for example
see [12, 13, 14], but this is an issue common to any data clustering method.

To demonstrate how this stability analysis can be performed for our method, we looked at
the siblinarity values S(A) obtained by our implementation of the siblinarity optimisation for
a given network across ten different runs for different numbers of communities, here different
values of our resolution parameter λ in (9). As Fig. H7 shows, the siblinarity scores tend to
decrease with an increase of λ, as expected. However, for a given λ, the scores obtained are
very similar (the same colour indicates the same random network). Lastly, we saw a minute
variation in the S(A) values, with standard deviation reaching the maximum of 0.005.

0.0 0.5 1.0 1.5 2.0
0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

S(
,

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.001

0.002

0.003

0.004

0.005
(S

(
,

))

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.070

0.075

0.080

0.085

0.090

S(
,

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

(S
(

,
))

Figure H7: Variations in siblinarity scores S(A) of (9). On the left, S(A) for a given network
is shown for a variety of λ for multiple networks (top) and a single network (bottom). On the
right, the standard deviation of S(A) obtained by running the algorithm ten times for each
λ is shown for multiple networks (top) and a single network (bottom). The results from each
network in the top figures are indicated using one colour and at a slightly shifted value of
lambda to aid visualisation. The mean and the standard deviation were obtained by running
the code 10 times for a given λ. Each network was created the Price model with subject fields,
described in Section 3.2 and has N = 1000 nodes. Each node attaches 5 edges to older nodes.
80% of the time a node chooses another node from its field (in total, there are 3 fields). For
the plot of standard deviation the dashed lines are only shown to guide the eye.

18

References

[1] Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

[2] Wikipedia: Family tree of the Greek gods. https://en.wikipedia.org/wiki/Family_
tree_of_the_Greek_gods

[3] Satuluri, V., Parthasarathy, S.: Symmetrizations for clustering directed graphs. In:
Proceedings of the 14th International Conference on Extending Database Technology -
EDBT/ICDT ’11. ACM Press, New York, NY, USA (2011)

[4] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69(2), 026113 (2004)

[5] Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E
74(1), 016110 (2006)

[6] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communi-
ties in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10),
10008 (2008)

[7] Vasiliauskaite, V., Evans, T.S.: Data for “Making Communities Show Re-
spect for Order” Paper. doi:10.6084/m9.figshare.9725159. https://figshare.com/s/

3ecc2bd6919a64916f44

[8] Python Software Foundation: Python programming language. https://www.python.

org/

[9] Python Packaging Authority (PyPA): Python Package Index (PyPI). https://pypi.org/

[10] Naik, V.: pipdeptree. https://github.com/naiquevin/pipdeptree

[11] Price, D.J.d.S.: A general theory of bibliometric and other cumulative advantage processes.
J.Amer.Soc.Inform.Sci. 27, 292–306 (1976)

[12] Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010).
0906.0612v2

[13] Schaub, M.T., Delvenne, J.-C., Yaliraki, S.N., Barahona, M.: Markov dynamics as a
zooming lens for multiscale community detection: non clique-like communities and the
field-of-view limit. PLoS ONE 7(2), 32210 (2012). doi:10.1371/journal.pone.0032210

[14] Lambiotte, R., Delvenne, J.-C., Barahona, M.: Random walks, markov processes and
the multiscale modular organization of complex networks. IEEE Transactions on Network
Science and Engineering 1(2), 76–90 (2014). doi:10.1109/tnse.2015.2391998

19

https://en.wikipedia.org/wiki/Family_tree_of_the_Greek_gods
https://en.wikipedia.org/wiki/Family_tree_of_the_Greek_gods
https://figshare.com/s/3ecc2bd6919a64916f44
https://figshare.com/s/3ecc2bd6919a64916f44
https://www.python.org/
https://www.python.org/
https://pypi.org/
https://github.com/naiquevin/pipdeptree

	Siblinarity antichain partition
	Resolution

	A Simple example
	Louvain Siblinarity Optimisation
	Basic Statistics on Antichains
	Additional Examples of Siblinarity and Data
	Greek Gods
	Python Dependencies

	Price Model with Subject Fields
	Performance of the algorithm
	Resolution

