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Introduction
In this Supplementary Materials, we report our investigations of modifications to
the standard GNN formulation for molecules encoding, to the protein encoding
neural network and to the combination of protein and molecule representations.

1 Exploring molecular graph encoding neural net-
work

Among the modifications that have been proposed in the general field of graph
representation learning, we considered those that appeared the most relevant
in the context of chemogenomics, both in terms of intuition and expected
performance improvements, as discussed below.

1.1 GAT
Among AGGREGATE(l)

node functions, the GAT function proposed by Velickovic
et al. [1] seemed the most promising to us. Indeed, it resulted in significant
performance improvement, and is intuitively relevant since it intends to prioritise
relevant neighbours via a multi-head attention mechanism at each node update.

We used the original implementation provided by the authors of the GAT
method. We optimised by varying the number of convolutional filters (in
{10,20,50,100,1000}), the keeping probability of dropout (in {0,0.3,0.6}) and the
number of attention heads (in {1,5,10}).

The GAT function did not lead to significant performance improvement for
the four settings, as reported in Table 1. Although the GAT function led to
substantial improvements in gold standard datasets of graph representation
learning, it did not in chemogenomics. This may be due to the the fact that
molecular graphs are small, and that all atoms of molecules are informative when
learning an end-to-end molecule encoding.

1.2 Considering edge descriptors

We also assayed the "wbond" function as AGGREGATE(l)
node function that

takes into account the bond attributes for the aggregation. The aim was to test
whether bond attributes can bring representation power and flexibility. Here,
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the "wbond" AGGREGATE(l)
node function refers to (as in Coley et al. [2]):

h
(l+1)
i = σ(W

(l)
0 · h(l)

i +
∑

j∈N (i)

W
(l)
1 · [h(l)

j ,xij ])

where σ is the sigmoid function, h(l+1)
i is the representation of atom i at step

l+1, [h(l)
j ,xij ] is the concatenation of the representation h

(l)
j of atom i at step l

and the bond attribute vector xij between atoms i and j, and W
(l)
0 ,W

(l)
1 are

learnable parameters.
We optimised by varying the number of convolutional filters (in {10,20,50,100,1000})

and the keeping probability of dropout (in {0,0.3,0.6}).
The "wbond" function did not lead to significant performance improvement

for the four settings, as reported in Table 1. The standard GNN may already
leverage bond information based on the nodes attributes and degrees (i.e., based
on the topology of the graph).

Independently, we tested several options to replace the summation in the
AGGREGATE

(l)
graph function and standard COMBINEgraph function of the

minimal GNN, that builds the graph-level representation directly from node
representations.

1.3 Max aggregation

When used as the AGGREGATE(l)
graph function, the sum function captures the

distribution of node features in a single value. Alternatively, the max function is
expected to capture representative elements in the node features’ distributions,
with no additional parameters to learn. This could be relevant for molecular bio-
activity prediction, as bio-activity may rely on representative elements such as
pharmacophores or functional groups. The chemogenomic neuron network, whose
GNN’s AGGREGATE(l)

graph function is set to the max function, is mentioned as
"CN-MaxAgg" in Table 1. Note that even if the sum function can theoretically
capture representative elements, in particular when the dimension of the feature
vector is high, the max function enforces capturing representative elements,
which may improve the performance.

However, it did not lead to substantial performance improvements for the
four settings on the DBEColi dataset.

Intuitively, this means that, in the case of small chemical compounds, the
simple sum function has the same representation power than the max for the
AGGREGATE

(l)
graph function. Therefore, in the case of small molecular graphs,

the sum function can capture representative elements in the graph (as well as
the max function), if these strategies are relevant for DTI prediction.
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1.4 Concatenation combination
Regarding the COMBINEgraph function, we tested concatenation of graph-
level representations after each updated m(l), used to build the final graph-level
representation m. We expect that it could help learning by skipping deleterious
layers and by representing molecules via substructures of different sizes. The
chemogenomic neuron network, whose GNN’s COMBINEgraph function is set
to the concatenation function, is mentioned as "CN-ConcatCombine" in Table 1.
Note that the simple sum function can, theoretically, adopt the same behaviour
if the dimension of the feature vector is high enough, and if the network learns
to store information in different locations in the feature vector at each update
step.

This did not lead to substantial performance improvements for the four
settings on the DBEColi dataset.

Intuitively, this means that, in the case of small chemical compounds, the
simple sum function has the same representation power than the concatenation
for the COMBINEgraph function. Therefore, in the case of small molecular
graphs, the sum function can learn to store information of subgraphs of different
sizes (as well as the concatenation function), if these strategies are relevant for
DTI prediction.

1.5 Hierarchical pooling combination

A promising approach to define a suitable AGGREGATE(l)
graph function is based

on differential hierarchical pooling, which has been proposed simultaneously by
several groups [3, 4, 5]. It allows for the graph convolutional architecture to
iteratively operate on coarser representations of a graph. To be precise, such
procedure actually replaces both the AGGREGATE(l)

graph and COMBINEgraph

functions, since it results directly in a final graph-level representation. This idea
was to design an analogue of the pooling operation for images, which was shown
to be of crucial importance for convolutional neuron network success in the field
of image processing. Indeed, one of the possible limitations of current GNNs is
that they are inherently flat, since they only propagate information across the
edges of the graph, without reducing the size of the graph. However, this could
be not particularly suitable for molecular graphs. Indeed, they are small enough
so that iterative convolutional node updates, followed by a simple summation of
graph nodes to build a graph-level embedding, could equivalently encode and
hierarchically agglomerate graph substructures of different sizes. Therefore, we
discuss and evaluate differential hierarchical pooling in more details later in this
work.

The chemogenomic neuron network whose GNN is based on hierarchical
pooling is mentioned as "CN-pool" in Table 1. Again, note that a simple sum
over node feature vectors can mimic the same behaviour, but the hierarchical
pooling procedure is expected to enforce learning the graph-level representation
in a hierarchical fashion and, hence, to improve encoding.
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This did not lead to substantial performance improvements for the four
settings on the DBEColi dataset.

It seems that standard GNN can also leverage information of substructures of
different sizes in a hierarchical manner. Indeed, the iteration of the nodes update
can already provide neighbouring information to each node in a hierarchical
manner.

2 Exploring protein sequence encoding neural net-
work

Since a priori relevant modifications of the GNN architecture encoding molecular
graphs did not significantly improve the prediction performance of the resulting
chemogenomic network, the performance bottleneck could be related to the
protein sequence encoder rather than the molecular graph encoder.

Therefore, we replaced the stacked CNN block that encodes the proteins in
the standard chemogenomic network by a biLSTM layer on top of a convolution
layer. Indeed, the bi-LSTM can locally integrate the detected patterns by the
convolutional layer to provide local contextual information, both forward and
backwards, whereas stacked convolutional layers process protein sequences by
detecting local patterns, patterns of patterns and so on.

We varied the dimension of the amino acids learnt representations ({10, 50,
100, 500}) and the amount of dropout ({0., 0.1, 0.3, 0.6}), to search for the best
performance.

However, the best performance reached by this architecture was identical that
obtained while using stacked convolutional layers of the standard chemogenomic
network, as shown in Table 1 at the row named "CN-biLSTM".

3 Exploring protein and molecule representations
combination

We now propose to investigate the use of an attention mechanism in the CNN
protein sequence encoder, which modifies the simple concatenation used as Comb
operation in the standard chemogenomic network.

We first implemented the attention mechanism proposed by Tsubaki et al [6]
and displayed in eq. ??, which resulted in a significant decrease of performance
for the four S1, S2, S3, and S4 settings. This might be due to the fact that this
attention mechanism is highly non-convex, since it relies on the dot product of
the two learnt representations, resulting in a rugged optimisation landscape.

Therefore, instead of using an attention mechanism calculated only for the
amino acids representations, we turned to an attention mechanism that computes
the pairwise representation hpair based on the concatenation [hprot,hmol] of the
protein hprot and molecule hmol learnt representations, following:

hpair = σ(Watt · [hprot,hmol] + batt)� [hprot,hmol]
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In the previous equation, σ refers to the sigmoid function and � to the
element-wise multiplication. This self-attention mechanism differs from that of
Tsubaki et al. in two ways. First, it selects learnt abstract features at the protein
and molecule level, whereas the precedent attention mechanism learnt attention
weights on abstract features at the amino acid level. Second, this mechanism
operates on the concatenation of the protein and molecule abstract features, and
jointly selects the most important protein and molecule features with respect
to the prediction task. This appears rather intuitive since the protein-ligand
interaction mechanism relies on both partners. However, in the present case, the
selected features are abstract, and therefore, not easily interpretable.

As reported in Table 1 (at the row named "CN-pairwiseAtt"), this did not
result in performance improvement, meaning that such soft attention mechanism
does not provide better representation power. It is most likely that the self-
attention mask "σ(Watt · [hprot,hmol] + batt)" produces a uniform attention
weight distribution in most cases.
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