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Table S3. Summary of the human studies reporting biomarkers positively related to intake of different kinds of meat, found in the systematic literature search. The studies are grouped and classified according to the category for which the biomarkers have been discussed in the main text. 
	Dietary factor

	Study 
              design
	Number
of
subjects

	Analytical
platform

	Sample type

	Discriminating metabolites / Candidate biomarkers
	Primary Reference(s)

	
General biomarkers of all meat intake


	Meat  (vs. dairy and grain)

	3 x 1w crossover RCT with 18E% protein.
	47 young men and women
	LC-MS
	24-hour urine
	Carnosine + 1-MH + 3-MH
	[1]

	Terrestrial meats (beef, pork chicken, turkey) and fish oil vs. mixed lean seafood

	2 x 4w crossover RCT 
	20 healthy subjects (7 men), average age 51y
	NMR

	Morning spot urine






	Guanidinoacetate
2,6-dimethylheptanoylcarnitine
Carnitine
N-methyl-2-pyridone-5-carboxamide
3-MH

	[2]

	Mixed pork and chicken contrast with herring

	2 x 4w crossover intervention
	15 obese men and women, 24-70y
	GC-MS/MS profiling
	Fasting plasma
	Agmatine
x-MH
	[3]

	Meat and seafood
	3 x 8d crossover RCT
	14 young adults (6 men) 

	EA-IRMS
	24-hour urine 
 and stool

	13C/12C
15N/14N
	[4]

	Meat (high, low or none)
	3 x 15d crossover RCT with 7d washout
	12 men (25-74y)
	NMR
	24-hours urine
	Creatine
Carnitine
Acetylcarnitine
TMAO
Taurine
1- and 3-Methylhistidine

	[5]

	Meat (vs. dairy)
	7d parallel meal study
	24 boys
	NMR
	Urine
	Creatine 
Histidine 
Guanidinoacetate

	[6]

	Meat vs. milk and bread
	7-10 day parallel study 
	4 young men one young woman 
	IEC
	Urine
	1-Methylhistidine
3-Methylhistidine
Carnosine
Anserine 
	[7]

	Meat vs. Sustacal

	4d + 7d sequential study
	14 young men 
	Amino acid analyzer 
	24-hours urine
	1-Methylhistidine
	[8]

	Meat and seafood
	5d sequential study
	5 
(2 men), 22-30y

	Amino acid analyzer
	Urine
	1-Methylhistidine 
	[9]

	Meat and other protein

	2 x 4d sequential 
	4 adult males
	IEC
	24-hour urine
	Taurine
	[10]

	Meat (rabbit)

	Single meal study
	2 subjects (no details)
	paper chromatography
	Sequential urine samples
	Anserine
Methylhistidines
β-alanine

	[11]

	Meat (red, fried and processed meat, fish, shellfish and poultry)

	Cross-sectional  
	3559 female twins, 18-84y
	LC-MS/MS
	Fasting blood (serum and plasma)
	Creatine
Pyroglutamine
Trans-4-hydroxyproline

	[12]

	Meat (red and processed)
	Cross-sectional association with validation group
 
	1491 (11% male)
	LC-MS/MS
	Fasting blood 
	Trans-4-hydroxyproline
Creatine
Pyroglutamine
	[13]

	Meat and processed meat (as component of various diet scores)

	Cross-sectional (Baseline of ATBC prospective study)
	1336 men, 50-69y
	LC-MS
	Serum


	trans-4-hydroxyproline
Ergothioneine
+ one unknown
	[14]

	Meat or fish (dietary abundance)
	Cross-sectional
	1254 men and women, 40-80y

	EA-IRMS
	Serum 
	15N/14N
13C/12C

	[15]

	Meat (total)
	Cross-sectional
	1192 children, 6-11y

	LC-MS and NMR
	Urine
Serum
	Creatine
PCs
	[16]

	Meat (total)
	Cross-sectional
	909 (36% male) 
	LC-MS/MS
	Overnight urine 
	3-Methylhistidine


	[17]

	Meat-based diet
	Cross-sectional (baseline of prospective study, EPIC-Oxford)

	379 men
	LC-MS
	Plasma
	Acylcarnitines (C-0, C-4, and C-5)
Acylcarnitines (C-3, C-16) 
Creatinine 
	[18]

	Meat or fish
	Cross-sectional 
	297 (58% men)

	NMR
	Plasma
	TMAO
	[19]

	Meat (total intakes)
	Cross-sectional 
	294 (101 men), 36-63y

	LC-MS
	Plasma
	Anserine
Carnosine 
3-MH

	[20]

	Omnivorous diet
	Cross-sectional study in vegetarians and omnivores
	161 (83 men), 18-55y
	NMR
	Overnight urine
	TMAO
Taurine
1- and 3-Methylhistidine
	[21]

	Omnivorous diet
	Cross-sectional study in vegetarians and omnivores
	159 
(80 men)
	Colorimetry
	Serum


Urine
Erythrocytes 
	Creatine
Creatinine (only in men)
Carnitine
Creatinine
Creatine

	[22]

	Meat (high vs. low)

	Cross-sectional
	127 men and women, 20-68y

	EA-IRMS
	Hair 
	13C/12C
15N/14N
	[23]

	All meat vs. vegetarian
	Cross-sectional study in vegetarians and omnivores

	126 middle-aged
(46 men)
	IEC
	Overnight urine
	3-Methylhistidine
	[24]

	Meat (omnivores vs. vegetarians)

	Cross-sectional
	121 men and women, 17-68y

	EA-IRMS
	Hair 
	13C/12C
15N/14N
	[25]

	Omnivorous diet
	Cross-sectional study in vegetarians and omnivores

	41 
(22 men)
	EA-IRMS
	Hair 
	15N/14N
13C/12C
34S/32S
	[26]

	Omnivorous diet
	Cross-sectional study in vegetarians and omnivores

	30 (details not provided) 


	EA-IRMS

	Hair keratin


	15N/14N
13C/12C
	[27]

	Omnivorous diet
	Cross-sectional study in vegetarians and omnivores
	161 (83 men), 18-55y
	NMR
	Overnight urine
	TMAO
Taurine
1- and 3-Methylhistidine
	[21]

	
Biomarkers of mammalian  (red and offal) meat intake


	Red meat discontinued intake

	4w Crossover  RCT
	113 
(44 men), 21-65y
	LC-MS/MS
	Blood plasma and urine
	TMA and TMAO
	[28]

	Red meat (pork and beef) 

	3 or 15d crossover in metabolic ward
	18 males, 24-74y
	TEA
	Faeces 
	ATNCs 
	[29]

	Red meat (pork and beef) 

	3 or 15d crossover in metabolic ward
	17 males, 24-74y 
	IEC 
	24-hour urine
	1-MH
3-MH
	[30]

	Pork vs no meat
	2 x 4w RCT
	14 women, 20-30y
	EA-IRMS
	Hair 
Plasma
Urine
	13C/12C
15N/14N
	[31]

	Beef vs. fish
	Crossover meal study
	40 men, 21-50y
	LC-MS/MS
	fasting and postprandial plasma 

	TMAO
TMA
DMA
	[32]

	Pork (ham) vs. non-meat
	Crossover meal-study 
	24 (12 men), 18-65y

	NMR
	postprandial urine
	Creatine
	[33]

	Beef vs fish
	Crossover meal-study
	17 men, 41-67y
	GC-MS
	0-7h postprandial blood plasma

	β-alanine
4-hydroxyproline
	[34]

	Beef vs chicken
	Crossover meal-study
	4 women (no details)

	LC–MS/MS 
	Pre- and post-prandial urine
	Anserine
Carnosine
	[35]

	Red meat and 
Offal meat

	15d sequential meals in metabolic ward
	8 subjects, 24-74y
	Competitive enzyme immunoassay
	Urine
	DHN-MA 
	[36]

	Red meat (fried beef  and pork) vs- dairy and fish
	4-5d sequential meal studies with washout

	10 adults, (5 men)

	Amino acid analyzer

	24hr urine

	1-MH
3-MH 
	[37]

	Beef vs. no meat
	Single meal study
	18 
(9 men), 18-25y

	HPLC
	Plasma (pre- and post-prandial)
	Carnosine
	[38]

	Beef
	Single meal sequential study
	7 (4 men), 25-60y

	Amino acid analyzer
	Urine (pre- and post-prandial)
	1-MH
	[39]

	Pork
	Single meal sequential study
	1 male, 45y

	HPLC
	Urine (pre- and post-prandial)

	Carnosine
	[40]

	Beef
	Single meal sequential study
	1 male, 45y

	HPLC
	Urine (pre- and post-prandial)

	Carnosine
	[40]

	Red meat (beef steak and pork chops)
	Cross-sectional study 
	3559 females
	LC-MS/MS
	Fasting blood (serum and plasma)
	Trans-4-hydroxyproline
Pyroglutamine
Creatine
	[12]

	Red meat
	Cross-sectional study
	1369 non-smoking women
	LC-MS/MS
	Urine
	PE(P-18:0/20:4)
PE (P-18:0/18:1)
+ one unknown

	[41]

	Total red meat
	Cross-sectional study
	294 (101 men), 36-63y

	LC-MS
	Plasma
	Carnosine 
3-MH
	[20]

	Red Meat 
	Cross-sectionally at baseline in a case-control colorectal cancer study (pearson correlations, FDR<0.1)
	253 subjects, 125 cases and 128 controls (77 men), average age 18-74y

	LC-MS or
GC-MS




	12 h overnight urine (no fasting)

	Acetylcarnitine
Xylitol
3-dehydrocarnitine 
Ethyl glucuronide
Carnitine
Cinnamoylglycine
Methyl-alpha-glucopyranoside
Sorbitol
+ 10 unknowns

	[42]

	Red meat
	Cross-sectional at RCT baseline

	125 (53 men), adults 
	NMR
	Plasma and overnight urine
	Acetylcarnitine
	[43]

	
Poultry

	
	
	
	
	
	

	Chicken
	Parallel RCT meal study with 5 different meats

	50 (5 x 10) subjects, 50% men, 51-64y

	HILIC LC-MS
	24-hour urine 
	3-MH
Anserine
+ one unknown (pos; m/z=212.0914)
	[44]

	Chicken

	Crossover meal-study
	4 women (no details)
	LC–MS/MS 
	6hr postprandial plasma 
7hr postprandial urine
	Anserine
Anserine
Carnosine

	[35]

	Chicken vs. vegetarian
	24d  sequential  intervention and time-course study

	35 
(5 men), 20-30y
	LC-MS
	Plasma
	3-MH
	[45]

	Chicken
	3w sequential dose-increase intervention study

	10 (5 men), ~60y

	NMR
LC-MS

	Urine
Plasma

	Guanidinoacetate
3-MH
1-MH
	[46]

	Chicken 

	Single meal sequential study
	1 male, 45y

	HPLC
	Urine (pre- and post-prandial)

	Anserine
3-MH
Carnosine
	[40]

	Poultry
	Cross-sectional  
	3559 female twins, 18-84y

	LC-MS/MS
	Fasting blood (serum and plasma)
	Creatine
	[12]

	Poultry
	Cross-sectional study
	1369 non-smoking women, mean age 68y

	LC-MS/MS
	Urine
	3-MH
+ one unknown
	[41]

	Chicken
	Cross-sectional study
	565, 
50% women, 18-90y

	NMR
	Fasting urine
	Guanidinoacetate
	[46]

	Poultry 
Chicken
Turkey

	Cross-sectional study
	294 
(101 men), 36-63y

	LC-MS
	Plasma
	3-MH
Carnosine
Anserine
	[20]

	Poultry intakes
	Cross-sectional study in vegetarians and omnivores

	126 middle-aged subjects
(46 men)
	IEC
	Overnight urine
	3-MH
	[24]

	Chicken vs. other meats
	Cross-sectional study
	46 (14 men), 40-70y
	HILIC LC-MS
	24-hour urine 
	Seven unknowns (POS m/z= 178.0145, 
255.0858, 259.1647, 124.0638, 
240.1226, 282.1337, 185.0801)

	[44]

	
Biomarkers of highly heated meat intake


	Beef (fried), high/low doneness
	2 x 4w crossover intervention study

	41 non-smokers (32 men),
18-63y

	LC-MS/MS
	Hair samples
	PhIP (total)
	[47]

	Beef (fried) vs no fried meat
	7w sequential diet intervention study w/o fried beef

	44 ((36 men), >18y

	LC-MS/MS
	Hair samples
	PhIP (total)
	[48]

	Beef (fried) vs no fried meat
	7w sequential diet intervention study w/o fried beef
	44 ((36 men), >18y
	LC-MS/MS
	0-12h postprandially
	PhIP
MeIQx
N(2)-hydroxy-PhIP-N2-glucuronide
N(2)-hydroxy-PhIP-N3-glucuronide
2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH)
2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx)

	[49]

	Beef (fried)
	7w sequential diet intervention study and hair dying

	14 non-smokers, >18y

	LC-MS/MS
	Hair samples
	PhIP (total)
	[50]

	Beef (charbroiled)
	19d sequential diet intervention study

	10 non-smoking men, 25-45y

	GC-MS
	Postprandial urine at intervals from 0-72h
	N(2)-hydroxy-PhIP-N2-glucuronide
N(2)-hydroxy-PhIP-N3-glucuronide
PhIP-4’-sulphate
	[51]

	Beef (charbroiled)
	19d sequential diet intervention study

	10 non-smoking men, 25-45y

	GS-MS 
	First morning voided urine samples
	PhIP (total)

	[52]



	Beef (charbroiled)
	19d sequential diet intervention study

	10 non-smoking men, 25-45y
	IAC- SFS
	First morning voided urine samples 
	1-OHPG
	[53]

	Beef (fried) vs. no fried food
	[bookmark: _GoBack]Sequential meal study study
	66 non-smokers
(33 men), 27-62y

	HPLC-MS
	Post-prandial 24-hour urine
	total MeIQx and PhIP 
	[54]

	Beef (fried) vs. no fried food
	Sequential meal study study
	66 non-smokers
(33 men), 27-62y

	GC-MS
	Post-prandial 24-hour urine
	N-OH-MeIQx-N2-glucuronide
	[55]

	Beef (fried) vs. no fried food
	Sequential meal study study
	66 non-smokers
(33 men), 27-62y

	GC-MS
	Post-prandial 24-hour urine
	N-OH-MeIQx-N2-glucuronide
	[56]

	Beef (fried) vs. no fried food
	Sequential meal study
	66 non-smokers
(33 men), 27-62y

	GC-MS
	Post-prandial 24-hour urine
	N-OH-PhIP-N2-glucuronide
	[57]

	Beef (fried) vs. no fried food
	Sequential meal study
	66 non-smokers
(33 men), 27-62y

	HPLC
	Pre and post-prandial 24-hour urine
	PhIP
	[58]

	Beef (fried) w/o broccoli diet
	Sequential meal study, 12 days washout.
	20 non-smoking men
	LC-MS/MS
	Postprandial 0-48h urine
	N(2)-hydroxy-PhIP-N2-glucuronide
N(2)-hydroxy-PhIP-N3-glucuronide
PhIP (total)
MeIQx (total)

	[59]

[60]

	Beef (fried) vs. no meat
	Sequential meal study study
	8 men, 40-57y
	GC-MS
	Pre and post-prandial 12-hour urine
	PhIP (total)
MeIQx (total)  
4'-OH-PhIP (total)
	[61]

	Beef (fried) w/o broccoli
	Sequential meal intervention study
	6 women (no details)
	LC-MS
	Pre and post-prandial 12-hour urine
	N-2-OH-PhIP-N-2-glucuronide, 
PhIP-N-2-glucuronide, 
4'-PhIP-glucuronide
N-2-OH-PhIP-N3-glucuronide

	[62]

	Beef (fried) vs. no fried food
	Sequential meal study
	non-smokers (details not provided)
	LC–MS/MS 
	Post-prandial 48-hour urine
	IQ 
MeIQx 
Trp-P-2 
Trp-P-1 
PhIP
AαC 
Norharman
Harman

	[63]

	Meat (cooked)
	Single meal study 
	100 nonsmoking men, 18-34y

	LC-MS
	12h pre- and post-meal
	PhIP (free)

	[64]

	Chicken (Fried)
	Single meal study
	12 non-smoking males
	LC-MS/MS
	Pre and post-prandial 24-hour urine
	N2-OH-PhIP-N2-glucuronide
N2-PhIP glucuronide
N2-OH-PhIP-N3-glucuronide 
4'-PhIP-sulfate 
	[65]

	Lamb kebab
	Single meal study
	12 non-smoking students (6 men)
	HPLC

	Urine 

	13 different monohydroxy PAH metabolites  (OHPAHs)

	[66]


	Chicken (Fried)
	Single meal study
	11 men and women (no details)
	LC-MS 

	Spot urine and post-prandial urine 
	PhIP
4′-OH-PhIP 
5-OH-PhIP
	[67]

	Chicken (Fried)
	Single meal study
	10 men and women, 25-45y

	LC-MS/MS
	Pre and post-prandial 24-hour urine
	N2-OH-PhIP-N2-glucuronide
N2-PhIP- glucuronide
N2-OH-PhIP-N3-glucuronide
4’-PhIP-Sulfate

	[68]

	Beef (fried), high/low intensity
	Two single-meal studies

	9+6 non-smokers 
	32P-postlabelling
	24h urine samples
	1-OHP
	[69]

	Chicken (barbequed)
	Single meal study
	9 non-smokers
(5 men),
23-61y
	GC/MS
	Urine
	1- and 2-hydroxy-NAP 
2-, 3-, and 9-hydroxy-FLU
1-, 2-, 3-, and 4-hydroxy-PHE
1-OHP
	[70]

	Pork (charcoal-barbecued)
	Two single meal studies with different PAH dose
	8 (3 men) + 5 (2 men) nonsmoking students
	HPLC-FLD
	Pre and post-prandial 12-hour urine
	1-OHP
	[71]

	Pork (charcoal-barbecued)
	Two single meal studies with different PAH dose
	8 (3 men) + 5 (2 men) nonsmoking students
	HPLC-FLD
	Pre and post-prandial 12-hour urine
	3-OHBaP
	[72]


	Chicken (Fried)
	Single meal study
	8 non-smokers
(4 men),
28-59y
	LC-MS/MS
	Post-prandial 12-hour urine
	PhIP
4′-OH-PhIP
5-OH-PhIP
Norharman 
	[73]

	Chicken (Fried)
	Single meal study
	8 non-smoking healthy females 
	LC-MS/MS
	Pre and post-prandial 24-hour urine
	N2-OH-PhIP-N3-glucuronide, 
PhIP-N2-glucuronide 
4'-PhIP-sulfate  (minor)
N2-OH-PhIP-N3-glucuronide (minor)
	[74]

	Meat (fried beef or fish)
	Single meal study
	7 volunteers (no details)
	GC-MS
	Post-prandial 12-hour urine
	MeIQx free and conjugated 
	[75]

	Chicken (Fried)
	Single meal study
	6 male non-smokers, 20-30y
	LC-MS/MS
	Urine and fecal samples up to 72 h after the meal
	PhIP
PhIP-MI
	[76]

	Meat (barbequed)
	Single meal study
	5 non-smokers (3 men), 25-53y
	HPLC

	daily 8-h urine

	1-OHP

	[77]


	Meat (grilled, roasted, or broiled)

	Cross-sectional study
	304 women, 27-80y
	IAC- SFS 
	24-hour urine
	1-OHPG

	[78]


	Fried meats vs. no fried food
	Cross-sectional 
study 
	129 male non-smokers, >35y
	GC-MS
	24h urine 


	MeIQx (free and acid labile)
	[79]

	Fried meats vs. no fried food
	Cross-sectional 
study 
	129 male non-smokers, >35y
	LC-MS
GC-MS
	24h urine 
	PhIP (free and acid libile)
MeIQx (free and acid labile)
	[80]

	Red (fried) and processed meat
	Repeated cross-sectional study
	111 women, 40-75y
	IAC- SFS
	Single spot urine sample in two seasons
	1-OHPG
	[81]

	Meat (fried) vs. vegetarian
	Cross-sectional study
	35 smoking or non-smoking subjects (no other details)

	GC-MS
	blood albumin
erythrocyte globin
	PhIP adducts
	[82]

	Beef (fried)
	Cross-sectional study
	20 
(7 men), 25-57y
	LC-MS
	Hair samples collected twice

	PhIP (total)
MeIQx (total)
	[83]

	Meat (grilled/stir-fried)

	Cross-sectional FFQ validation study
	20 
(7 men), 25-57y
	LC-MS
	Hair samples collected twice

	PhIP
	[84]

	Meat (fried/grilled)
	Cross-sectional study
	14 non-smokers (6 men), 21-51y

	GC/MS
	Hair
	PhIP
	[85]

	Meat (Cooked) vs. no meat
	Cross-sectional study
	12 non-smokers, 6 meat-eaters, 6 vegetarians

	LC-MS/MS
	Hair samples
	PhIP 
	[86]

	
Processed meat


	Processed meat
	2 x 14 days crossover RCT study in metabolic suite

	16 non-smokers (5 men), 20-85y
	TEA
	Fecal sample
	ATNC
	[87]

	Ham (Cooked) w/o Ca and vit E
	2 x 4d cross-over intervention study
	17 men, 40-75y
	TEA (for ANTC) 
UV-VIS spectrometry (for TBARS and heme)

	Fecal sample
	ATCN
TBARS
heme
	[88]

	Processed meat vs. other meats
	Parallel RCT meal study with 5 different meats



	50 (5 x 10) subjects, 50% men, 51-64y


	HILIC LC-MS
	24-hour urine 
	Two unknowns (POS m/z=240.1226, 
160.0849)



	[44]

	Nitrite-preserved meats vs. vegetarian

	Sequential dietary change intervention study
	6 (4 male, 2 female), 37-55y; 22 vegans, 18-65y and 14 vegetarians, 26-36y
	GC-TEA
	4-day 24-hour urine collections
	N-nitrosoproline
	[89]


	Smoked food 
	Single-meal study
	13 smokers and non-smokers (no details)

	HPLC-FLD
	Urine collections over 24 hours
	1-OHP
	[90]

	Sausage and bacon
	Cross-sectional study
	3559 female twins, 18-84y 
	LC-MS/MS
	Fasting blood (serum and plasma)
	Pyroglutamine
Creatine

	[12]

	Processed meat
	Cross-sectional study
	1369 non-smoking women

	LC-MS/MS
	Urine
	X-18922
	[41]

	Processed meat
	Cross-sectional analysis of nested case-control study
	502 CRC cases and controls (281 men), 55-74y

	LC-MS/MS
GC-MS
	Serum
	Lathosterol
	[91]

	Processed meat
	Cross-sectional 
	294 (101 men), 36-63y

	LC-MS
	Plasma
	Anserine

	[20]

	Processed meat

	Cross-sectionally at baseline in a case-control colorectal cancer study (pearson correlations, FDR<0.1)
	253 subjects, 125 cases and 128 controls (77 men), average age 18-74y

	LC-MS or
GC-MS




	12 h overnight urine (no fasting)





	Acetylcarnitine
Carnitine
+ 3 unknowns 
	[42]

	Processed meat

	Cross-sectional study
	239 males, 55-79y
	ESI-MS/MS
	Blood sample
	PC(38:4)
	[92]


	Processed meat (bacon, pork/ham and sausage/
luncheon meats)

	Cross-sectional study
	131 subjects (61 smokers), >35y
	GC-MS 
	Overnight urine 
	MeIQx (total)
	[93]

	Processed meat

	Cross-secttional study
	46 (14 men), 40-70y

	HILIC LC-MS
	24-hour urine
	Carnosine
2-Methylbutyrylcarnitine
Propionylcarnitine
1-Methylhistidine
3-Methylhistidine
+ two unknowns (POS m/z=240.1226, 
160.0849)
 
	[44]

	
Biomarkers of fish intake


	New Nordic Diet (fish component)

	3 mo. Crossover RCT
	834 school children, (434 boys) 9-11y
	GC
	Fasting whole blood
	EPA 
DHA 

	[94]

	Fish vs. meat
	12w Parallel RCT  
	415 adolescents (195 boys), 14-15y

	GC
	serum
	EPA
DHA
DPA
omega3 index (n-3 PUFA/total FA)
	[95]

	New Nordic Diet (fish component >43g/10MJ) vs. average Danish diet

	6 mo. Parallel RCT
	181  centrally obese (52 men), 18-65y
	LC-MS
	Urine 
	TMAO  
	[96]

	Nordic diet with high fish vs. habitual
	18-24w Parallel RCT
	166 middle-aged overweight subjects (63 men) 

	GC
	Fasting blood samples 
	EPA
DHA
	[97]

	Fatty fish vs. other meat


Salmon
Herring

	8w Parallel RCT
	126 women, 35-70y
	Capillary-GC
	Fasting blood samples at baseline and after 8wks
	DHA
EPA+DHA
n-3 FA
n-6/n-3 PUFA ratio
EPA
EPA
	[98]

	Nordic diet (fish component)

	12w Parallel RCT
	106 with metabolic syndrome (age and gender not provided)

	HPLC-MS
	Fasting blood plasma samples 
	CMPF 
	[99]

	High-protein Mediterranean-style diet vs. AHA control

	6 mo Parallel RCT
	96 overweight subjects (52 men) average age 49y

	
	plasma
	CMPF
EPA
	[100]

	Salmon Atlantic Farmed, 3 servings/wk vs control 
	6mo Parallel RCT 
	95 male sexual offenders in custody, 21-60y 

	GLC
	Fasting blood samples
(erythrocytes)
	EPA+DHA 
	[101]

	Salmon (Atlantic) vs. lean fish


	8-week Parallel RCT
	92 dyslipidemic men, 35-70y 
	GC
	Fasting blood samples
	EPA
DHA
DPA
n-6/n-3 PUFA ratio
n-3 PUFA 
	[102]

	Fatty fish vs. lean fish
	12w Parallel RCT
	79 pre-diabetic subjects (40 men), 43-72y

	GLC
	Esterified FA in plasma
	EPA
DPA
DHA
	[103]

	Herring (5 meals/week) vs. chicken and pork

	2 x 6w crossover RCT
	35 overweight men, 35-60y

	GC
	Whole blood
	(EPA + DHA):AA 
EPA 
DHA 
	[104]

	Cod and haddock 
	Parallel RCT meal study with five different meats
	46 (14 men), 40-70y

	HILIC LC-MS
	24h-urine samples


Fasting plasma samples

	3-MH
TMAO

(no markers)
	[44]

	Wild or farmed salmon
	4w parallel double-blinded RCT
	28 healthy men, 20-49y
	HPLC
	Plasma on days 0, 3, 6, 10, 14 and 28
	Astaxanthin
	[105]

	Mackerel 
	4w Parallel RCT
	28 men, 21-28y
	Capillary GC
	Plasma 
	n-3 FA 
EPA 
DHA 
	[106]

	Salmon 
	3 x 4w crossover RCT
	25 subjects (14m, 11f)

	GC
	Erythrocyte membranes
	EPA
DHA
	[107]

	Fatty fish (2x per week)
	4w Crossover RCT 
	25 (14 men), 23-65y
	Capillary-GC
	Fasting plasma PL
	EPA
DHA 

	[108]

	Salmon (smoked) vs. non-meat meals

	4 x Cross-over (latin squares) meal study
	24 healthy volunteers (sex and age not provided for all), >18y

	FIE-MS and GS-MS

	0, 1.5, 3 and 4.5h urine samples 
	TMAO 
Anserine
x-MH
+ one unknown
 
	[109]

	Fish (high vs. low)
 
	24w parallel RCT
	22 (10 men), >40y 
	GC-MS
	12-h fasting blood samples 
	EPA
DHA 
	[110] 

	Salmon (Atlantic farmed), 180, 360 or 540g/w 
	3 x 4w crossover RCT, 4-8w washout
	19 healthy men and women (numbers not provided), 40-65y 

	GC
	Fasting plasma PL
	EPA
DHA
n-3 PUFA
EPA+DHA
n-6/n-3 PUFA ratio 

	[111]

	Herring vs. pork and chicken
	2 x 4w crossover RCT, 2w washout
	13 overweight or obese subjects, 24-70y
	Capillary-GC
	Fasting plasma samples
	EPA/AA ratio  
EPA 
DHA 
n-6/LCPUFA 
n-6/n-3 

	[112]

	Lean fish (cod) vs. beef
	Crossover meal study
	40 men, 21-50y
	LC-MS/MS
	fasting and postprandial plasma 


Urine

	TMAO
MA
DMA

TMAO
	[32]

	Salmon (smoked) vs. non-fish meals

	Cross-over meal study
	24 healthy volunteers (gender not provided), >18y

	FIE-MS, GS-MS

	1.5-, 3-,
and 4.5-h postprandial urine
	x-MH
Anserine
TMAO
Unknown (m/z= 221.06445)
	[113]


	Fish vs. animal or vegetable protein

	Crossover meal study (9 meals)
	17 (4 men), 20-30y
	LC-MS
	24-hour urine 
	TMAO 
	[114]

	Lean fish (cod)
	Crossover RCT meal study
	11 obese pre-diabetics (3 men), 40-68y
	GLC
	Plasma
	TMAO
N,N,N-trimethyllysine
1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid
Arsenobetaine (AsB)
Methylhistidines
	[115]

	Salmon (Atlantic) vs. meat or vegetarian 
	3 x 3w sequential  study with 3w washout
	29 healthy subjects (14 men), 22-52y
	Capillary-GC
	Fasting Serum 


Blood phospholipids




Platelet phospholipid


	DHA 
EPA 

EPA 
DPA 
DHA 
AA/EPA 

DHA 
EPA 
AA/EPA 

	[116]

	Fish vs other meals

	Sequential meal study
	8 volunters (no details)
	NMR
	Urine
	TMAO
	[117]

	Fish vs. other proteins
	Six Sequential meal studies
	7 (1 man), 28-45y
	NMR
	Urine samples (4 per day)
	TMAO 
Creatine 
3-Methylhistidine 

	[118]

	Fish
	Sequantial meal study 
	6 healthy non-smoking men, average 32y
 
	GC
	Urine
	TMAO
	[119]

	Eel 
	Single meal sequential study
	1 man, 45y

	HPLC
	Urine (pre- and post-prandial)

	Carnosine
	[40]

	Tuna 



	Single meal sequential study
	1 man, 45y

	HPLC
	Urine (pre- and post-prandial)

	Anserine
1-Methylhistidine
Carnosine
	[40]

	Fish (Total lean + fatty)
	3y prospective study
	214 diabetics (112 men), >20y
	GC
	Plasma phospholipids (fasting at baseline, non-fasting at follow-up)
	EPA 
DPA 
DHA 
Sum n-3 
Sum n-6 
PLN3-index
n-6/n-3 LC-PUFA 
	[120]

	Fatty Fish



	3y Prospective study
	214 diabetics (112 men), >20y
	GLC
	Plasma phospholipids (fasting at baseline, non-fasting at follow-up))
	EPA
DHA 
n-3 FA
n-6 FA
Ratio of n-6/n-3 PUFA
	[120]

	Lean Fish



	3y prospective study
	214 diabetics (112 men), >20y
	GC
	Plasma phospholipids (fasting at baseline, non-fasting at follow-up)
	EPA 
DHA 
n-3 PUFA 
n-6 PUFA 

	[120]

	Fish intake level
	9 mo. Prospective study
	90 mothers, 63 infants (1 mo.)

	GC
	Fasting serum
	DHA
EPA
n-6/n-3 PUFA ratio
	[121]

	Fatty fish


Lean  fish Total fish 
	Cross-sectional study
	3003 (1421 men), 45-64y
	GLC
	Plasma Phospholipids
	DHA 
EPA 

DHA
DHA
	[122] 

	Fish
	Cross-sectional study
	1369 non-smoking women
	LC-MS/MS
	Urine
	CMPF
DHA
EPA
Choline(C22:6)
Choline(C20:5)
MG(22:6/0:0/0:0)
+1 unknown

	[41]

	Dark fish
	Cross-sectional study
	1369 non-smoking women
	LC-MS/MS
	Urine
	CMPF
DHA
EPA
DPA
Choline(C22:6)
Choline(C20:5)
MG(22:6/0:0/0:0)
SM(d18:2/18:1)
+2 unknowns

	[41]

	Fish (as component of certain diet scores)
	Cross-sectional (Baseline of ATBC prospective study)
	1336 men, 50-69y
	LC-MS
	Serum


	CMPF
DHA
DPA
EPA
PC(34:1)
MG(22:6/0:0/0:0)
FA(18:4n–3)
LPC(22:6)
N-acetyl-3-methylhistidine
3-Methylhistidine
Ergothioneine
Creatine

	[14]

	Fish protein 


	Cross-sectional
	1254 men and women, 40-80y

	EA-IRMS
	Serum 
	15N/14N
13C/12C

	[15]

	Fish-based diet (oily fish)
	Cross-sectional study
	44 Yup’ik Eskimos (14 men), >14y

	EA-IRMS
	Hair 
	15N/14N
13C/12C
	[123]

	Fish-based diet (oily fish)
	Cross-sectional study
	496 Yup’ik Eskimos (208 men), >14y
	EA-IRMS
	RBC
	15N/14N
	[124]

	Fish (marine foods) vs. meat







	Cross-sectional study
	270 Chinese (135 men), average age ~51±12y 
	LC-MS, GC-MS
	Fasting plasma
	EPA
DHA
CMPF
Hydroxyproline
PE(p36:5)
PC(36:5)
LPC(22:6)
LPE(22:6)
DHA-containing PCs, PEs and plasmalogens

	[125] 

	Fish-based diet (oily fish)
	Cross-sectional study
	230 Alaska natives (97 men), >14y
	EA-IRMS
	RBC
	15N/14N

	[126]

	Dark fish
	Cross-sectional study
	1369 non-smoking women
	LC-MS/MS
	Urine
	CMPF
DHA
EPA
DPA
Choline(C22:6)
Choline(C20:5)
MG(22:6/0:0/0:0)
SM(d18:2/18:1)
+2 unknowns

	[41]

	Fish
	Cross-sectional study
	34 (16 men), 18-60y
	ESI-MS/MS
	Fasting serum and plasma 

	LPE(C18:2)
PE(C38:4)
	[127]

	Fish intake (association)







	Cross-sectional (baseline in a case-control colorectal cancer study; Pearson correlations, FDR<0.1)
	253 subjects, 125 cases and 128 controls (77 men), average age 18-74y

	LC-MS or
GC-MS



LC-MS

	Serum




12h non-fasting urine
	X - 02269 (X - 11469) (m/z= 255.1)
CMPF
DHA
X – 12644 (m/z= 524.3)

CMPF

	[42]

	Salmon (frequency of intake)
	Cross-sectional study

	68 middle-aged Northumberland residents (33 men), 
	FIE-MS
	24-hour urine 
	1-Methylhistidine
3-Methylhistidine
Creatine
	[128]

	Fish-based diet (oily fish)
	Cross-sectional study
	44 Yup’ik Eskimos (14 men), >14y

	EA-IRMS
	Hair 
	15N/14N
13C/12C
	[123]

	
Biomarkers of mixed fish and fish oil intake


	Salmon  fed fish oil or rape seed oil
	6w parallel RCT
	58 CHD patients (50 men), 46-75y
	GC
	Fasting blood samples at baseline and after 6wk
	n-3 PUFA
DHA
EPA
Ratio (n-3/n-6)PUFA
	[129]

	Salmon  vs fish oil
	8w Crossover RCT with 6 mo washout
	33 healthy Serbians (18 men), 44-64y

	Capillary GC
	Fasting platelets and RBCs
	EPA 
DHA

	[130]

	Fish free diet, fish diet, fish diet+fish oil

Fish oil
	3 x 6w crossover RCT with 6w waskout


6w parallel trial 


	12 healthy men, 18-58y


11 healthy men, 18-58y

	Flame ionization capillary-GC
	Fasting blood samples
	EPA
DPA 
DHA

EPA
DPA 
DHA

	[131]

	Fish diet followed by   fish oil
	2 x 6 mo. sequential study 
	191 patients (110 men), >50y
 
	Not specified
	Plasma samples 
	EPA 
EPA:AA
	[132]

	Fish spread



	3y prospective study
	214 diabetics (112 men), >20y
	GC
	Plasma phospholipids (fasting at baseline, non-fasting at follow-up)
	EPA 
DPA 
DHA 
n-3 PUFA
n-6 PUFA
	[120]

	
Biomarkers of fish oil intake


	Fish oil 8-10g vs. placebo pills before surgery
	2-10d Parallel RCT
	564 cardiac surgery patients (406 men), average age 63y

	GC
	Plasma PL

	EPA
DPA
DHA
n-3 PUFA 
	[133]

	Fish oil (0.33-4.5g/d) vs. flaxseed oil
	14d Parallel RCT and  dose-response 
	303 young women
	GLC
	Plasma PC
	DHA
EPA
	[134]

	Fish oil, 2.2g/d vs olive oil

	12w Parallel RCT 
	141 healthy, middle-aged
	Capillary GC
	Fasting erythrocyte PL
	EPA
DPA 
	[135]

	Fish oil equaling 1, 2 or 4 fish servings/w
	12mo Parallel RCT 
	128 (79 men), 20-80 with no habitual fish intake
	GC
	Fasting blood, (red blood cells, mononuclear cells, platelets, plasma phosphatidylcholine, triglycerides, cholesteryl esters, and nonesterified fatty acids), buccal cell, abdominal subcutaneous adipose tissue samples

	EPA 
DHA 

	[136]

	Fish oil with 5g DHA + EPA vs. corn oil
	4mo Parallel RCT  
	124 psoriasis patients (80 men), aged 19-74y
	GC
	Serum PL
	EPA
DPA
DHA
Sum n-3 PUFA
Sum n-6 PUFA
AA:EPA
n-6 PUFA /n-3 PUFA
	[137]

	Fish oil, 0-1800mg DHA+EPA
	5 mo Parallel RCT 
	115 healthy subjects (60 men), 20-45y
	GC
	Erythrocyte membrane 
	EPA
DPA 
DHA 
	[138, 139]

	Fish oil (1.8g/d) vs. krill oil (1.8g/d) and controls (none)

	4w Parallel RCT  
	113 healthy subjects, (36 men), average age 40. 
	GC-MS
	Plasma
	EPA
DHA
DPA
	[140]

	Fish oil vs. flaxseed, hempseed, or sunflower oil (all 2g/d).

	12w Parallel RCT 
	86 healthy adults (34 men), 30-35y
	GLC
	Fasting plasma
	EPA 
DHA 
	[141]

	Fish oil 1.5g/d vs. corn oil 
	8w Crossover RCT with 8w washout
	84 subjects (29 men), divided by a polymorphism in eNOS (40 wt)

	GC
	Fasting plasma and PL
	EPA
DPA
	[142]

	Fish oil, 125mg/kg/d 
	90d Parallel intervention study
	65 kids with phenylketonuria and 30  healthy controls (17 boys), 1-11y

	Capillary-GLC
	Blood plasma samples (4-hour fasting) at baseline and after intervention: plasma phospholipid fatty acid
	EPA 
DPA 
DHA 
n-3 PUFA 
n-6 PUFA 
n-3 PUFA /n-6 PUFA
	[143] 

	Fish oil (0.6-3.6 g/d) vs. flaxseed oil (1g/d)

	12w Parallel RCT 
	62 healthy male fire-fighters, around 30-50y

	GLC
	Plasma and  erythrocyte PL
	EPA 
DPA 
DHA 
	[144]

	Fish oil (4g EPA + DPA/d) vs soybean oil control

	12w Parallel, blinded trial 
	60  subjects (46 men), >18y; treatment/ control 45/15)
	Capillary-GC
	Plasma (RBC)
	Omega-3 index (for compliance)
	[145]

	Fish oil, 0-9g/d
	12 mo Parallel RCT + 6 mo washout
	58 male monks, around 40-70y 
	GLC
	Fasting serum cholesteryl esters, erythrocytes, and subcutaneous adipose tissue 

	EPA 
DPA 
DHA 
	[146]

	Fish Oil, flaxseed oil, or corn oil
	180d 3-arm Parallel RCT 
	53 T2D patients (19 men), average age 63y
	GC-MS and LC-MS
	Fasting serum



Fasting serum
	CMPF
PC-EPA
EPA

CMPF
EPA
PC-EPA
DHA
DPA

	[147]

	Fish oil vs. olive oil, 2g/d
	6w Parallel RCT 
	50 overweight subjects, (24 men), 30-75y

	GC
	Fasting granulocytes and subcutaneous adipose tissue samples
	EPA 
DPA 
DHA 
Sn-3 PUFA 
n-3 PUFA /n-6 PUFA 
	[148]

	Fish oil, 1.7g/d vs. safflower oil. 
	4w Parallel RCT  
	41 healthy men, BMI>23., 18-30y

	GC
	Plasma PL and RBC
	EPA
DHA
EPA+DHA
	[149]

	Tuna oil, 0.44-1.9g/d, linseed oil, or placebo 
	12w 5-arm Parallel RCT  


	40 healthy men, 18-39y
	GC
	Fasting plasma PL
	EPA
DHA

	[150]

	Fish oil ± vit. B12
	8w Parallel RCT 
	30 healthy adults (sex unknown), 20-26y
	TLC (for PL) and GLC (for FA methyl esters)
	PL and plasma
	EPA 
DHA 
n-3 PUFA 
n-6 PUFA  
n-3 PUFA /n-6 PUFA 
	[151]

	Fish oil (5g) vs. EPA (3g) 

	3w Parallel RCT
	29 healthy low-fish consumers (18 men), around 30y

	TLC and GC
	Serum and PL
	EPA 
DHA 
	[152]

	Fish oil (600mg/d) vs. olive oil (600mg/d)
	2 x 4w Cross-over trial
	24 hyperlipoproteinemic patients (no details)

	GC-MS
	plasma

urine
	CMPF

CMPF
	[153]

	Fish oil (1.3g EPA + DHA/d)
	12w Parallel RCT  
	23 middle-aged  hemodialysis patients (18 men)
	GC
	Fasting plasma 




RBC

	EPA
DPA
DHA
n-6/n-3

EPA+DHA
n-6 PUFA
	[154]

	Fish Oil (EPA + DHA at 0, 0.25, 0.5 or 1g/d)
	Parallel intervention study, partially sequential.
	20 subjects (11 men), aged 18-35y
	GC
	Fingerprick whole blood 



Erythrocytes,
PL, WB 
	DHA
DPA
EPA

% EPA+DHA 
% n-3 HUFA/total HUFA
DHA:EPA

	[155]

	Fish oil with 380mg n-3 LC-PUFAs
	4w Parallel RCT  
	17 healthy subjects (sex unknown), 25-69y

	GLC
	Plasma PL
	EPA
DPA
n-3 PUFA

	[156]

	Fish oil (2.8 g EPA and 1.4 g DHA) vs. corn oil ± isoflavones

	RCT meal study
	10 overweight men, >45y
	GLC
	Serum
	EPA 
DHA 
n-3 PUFA 
	[157]

	Fish oil, 3g/d, no control group
	12w Sequential study


	27 hemo-dialysis patients (13 men), average age 61y

	GC
	Non-fasting plasma 
	EPA
DPA
	[158]

	Fish oil, 6g/d
	3w Sequential intervention study 
	19 healthy subjects (2 men), 22-53y
	GLC
	Fasting plasma and plasma PL
	EPA 
DPA 
DHA
	[159]

	Fish Oil (1.2g EPA, 0.8g DHA)

	20w sequential intervention study (12w suppl., 8w washout)

	12 men, 18-25y
	GC
	Serum and RBC 
	EPA
DHA
DPA
	[160]

	Fish Oil (2g EPA + 1g DHA/d), no controls

	3mo Sequential intervention study 
	10 healthy men, average age 23y

	GC
	Fasted serum samples 
	EPA
DPA
DHA
	[161]

	Fish oil, 5g/d (1g n-3 PUFA)
	Sequential intervention study, duration not provided.
	10 neurologically disabled children (9 boys), 2-13y
	GLC
	Serum and PL
	EPA 
DHA 
n-3 PUFA 

	[162]

	Cod liver oil, 10-40ml/d
	20w Sequential study with dose increase for 12w, then decrease for 8w
	6  healthy men, 26-36y
	GLC







	Plasma free FAs at multiple time points


Plasma PL


Erythrocyte membranes
	EPA
DHA

EPA
DHA

EPA
DHA
	[163]

	Cod-liver oil vs. none



	3y Prospective cohort study
	214 diabetics (112 men), >20y
	GC
	Plasma PL (fasting at baseline, non-fasting at follow-up)
	EPA 
DPA 
DHA 
n-3 PUFA
	[120]

	
Mixed seafood markers (including As-compounds)


	Lean seafood and fish (cod, Pollack, scallop) vs. non-seafood diet with fish oil

	2 x 4w crossover RCT 
	20 healthy subjects (7 men), average age 51y
	NMR

	Morning spot urine


Fasting serum
	TMAO
DMA

TMAO
	[2]

	Seafood (cod, farmed salmon, or blue mussels) vs potato
	RCT meal study
	39 healthy volunteers (10 men), 20-40y 
	HPLC-ICPMS
	Urine over 72 hours
	Total As
iAs
DMA
AsB
Non-AsB As

	[164]

	Mixed seafood compared with other protein sources

	2w sequential study (before-after)
	153 postmenopausal women, around 75y
	isotope ratio MS
	Fasting serum sample
	15N/14N
13C/12C
34S/32S
	[165]

	Seafood (Tropical) vs. no fish
	2w sequential intervention study 
	12 healthy Australian natives (2 men), mean age 24y

	Capillary-GLC
	Plasma fatty acids
	DHA
DPA
EPA
AA

	[166]

	Seafood (lean): lemon sole, wolfish, crabs

	Single meal sequential intervention study after 4 days without fish or shellfish
	3 healthy volunteers (1 man), 23-50y
	HPLC-ICPMS
	Urine
	Total As
AsB
DMA
	[167]

	Seafood (comparing also environmental exposures and other food sources) 

	5mo Cohort study with weekly urine collections 
	6 healthy Italian men
	HPLC-ICPMS
	Morning urine 
	AsB
iAs
DMA
MMA
	[168]

	Seafood (fish, shellfish) intake estimates

	Bladder cancer case-control study (retrospective) in Michigan, USA

	343 local participants, 151 cases and 192 controls, (242 men)

	HPLC-ICPMS
	Spot urine 
	AsB
	[169]

	Seafood and plant protein (as component of various diet scores)
	Cross-sectional (Baseline of ATBC prospective study)
	1336 men, 50-69y
	LC-MS
	Serum


	CMPF
DHA
DPA 
EPA
PC(34:1)
MG(22:6/0:0/0:0)
FA(18:4n–3)
LPC(22:6)
N-acetyl-3-methylhistidine
3-Methylhistidine
Creatine
Ergothioneine

	[14]

	Seafood (fried and non-fried fish, raw shellfish)

	Cross-sectional study (baseline from MESA cohort)
	900 participants (387 men), average age ~60y

	GC
	Plasma PL
	EPA
DHA
DHA+ EPA
	[170]

	Seafood (fish, raw oysters, shellfish)
	Cross-sectional study (baseline of NHANES 2003-2004)
	788 participants (417 men), >20y

	HPLC-ICP-DRC-MS
	Spot urine 
	Total As
DMA
AsB
Non-AsB As
	[171]

	Mixed fish and shellfish









	Cross-sectional study
	270 Chinese (135 men), average age ~51±12y 
	LC-MS, GC-MS
	Fasting plasma
	Hydroxyproline
Valine
Lysine
EPA
DHA
CMPF
PE(P-36:5)
PC(36:5)
LPC(22:6)
LPE(22:6)
DHA-containing PCs, PEs, and plasmalogens

	[125] 

	Japanese coastal diet baseline values
	Cross-sectional study (baseline of astaxanthin intervention)
	20-30 healthy male subjects, 40-69y
	LC-MS
	Fasting heparin plasma (20 subjects) and erythrocytes (30 subjects)
	Astaxanthin
	[172, 173]

	
Shellfish markers (including As-compounds)


	Shellfish (oysters, clams, crabs, mussels, squid and shrimps)
 
	3 x 21w Parallel RCT with sequential diets where each period contained only one shellfish 
	18 men, 23-38y
	GC
	Plasma and erythrocyte  membrane

	EPA 
DHA 
	[174]

	Blue mussels
	Single meal intervention study
	4 men, 5 women
	HPLC-ICPMS
	Urine over 72 hr
	AsB
DMA+As(V)
As sugars
Sum of unknowns As compounds

	[175]

	Shellfish
	Cross-sectional study
	1369 non-smoking women

	LC-MS/MS
	Urine
	CMPF

	[41]

	Shellfish
	Cross-sectional analysis of nested case-control study
	502 CRC cases and controls (281 men), 55-74y

	LC-MS/MS
GC-MS
	Serum
	CMPF
	[91]

	Shellfish
	Cross-sectional study
	270 Chinese (135 men), average age 51±12y 

	LC-MS, GC-MS
	Fasting plasma
	PE(P-36:4)

	[125] 

	Shellfish
	Cross-sectional analysis of samples from a case-control colorectal cancer study
	253 subjects, 125 cases and 128 controls (77 men), 18-77y

	LC-MS
GC-MS


LC-MS or GC-MS

	Serum



12h non-fasting overnight urine
	CMPF
+ one unknown (POS m/z= 255.1)


Lysine
2-aminoethylphosphonate
2-hydroxybutyrate
Creatine
3-hydroxybutyrate 
Taurine
N-acetylglycine
Alpha-hydroxyisovalerate
Sulforaphane-cysteine
	[42]


Abbreviations: 1-OHP, 1-hydroxypyrene; 1-OHPG, 1-hydroxypyrene glucuronide; 1-MH, 1-methylhistidine (-methylhistidine); 3-MH, 3-methylhistidine (-methylhistidine) ; AA, arachidonic acid; AC, 2-amino-9H-pyrido[2,3-b]indole; AsB, arsenobetaine; ATNC, apparent total nitroso compounds; CMPF, 3-​carboxy-​4-​methyl-​5-​propyl-​2-​furanepropanoic acid; DHA, docosahexaenoic acid; DMA, dimethylamine; DHM-MA, ; DPA, docosapentaenoic acid; EA-IRMS: elemental analyzer coupled online via a conflow interface with an isotope ratio MS; EPA, eicosapentaenoic acid; FA, fatty acid; FIE-MS: flow infusion electrospray–ionization mass spectrometry; FLD: fluorence detector; FLU, fluoranthene; GC-MS: gas chromatography coupled with mass spectrometry; HPLC: high pressure liquid chromatography; IAC: immunoaffinity chromatography; iAs, inorganic As; IEC: ion-exchange chromatography; LC-MS: liquid chromatography coupled with mass spectrometry; LPC(x:y), lysophosphatidylcholine with one esterified fatty acid having in total x carbons and y double bonds; LPE(x:y), phosphatidylethanolamine with one esterified fatty acid having in total x carbons and y double bonds; MeIQx, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline; MG(x:y/0:0,0:0), monoacylglycerol with a fatty acid of x carbons and y double bonds in position 1; MMA, monomethylamine; NAP, naphtalene; NMR: nuclear magnetic resonance spectrometry; PC(x:y), phosphatidylcholine with two esterified fatty acids having in total x carbons and y double bonds; PC-EPA, PC-containing esterified EPA; PE(x:y), phosphatidylethanolamine with two esterified fatty acids having in total x carbons and y double bonds; PHE, phenanthrene; PhIP, 2‑Amino-1-methyl-6-phenylimidazo[4,5‑b]pyridine; PL, phospholipids; PUFA, polyunsaturated fatty acids (n-3 and/or n-6); SFS : synchronous fluorescence spectroscopy; SM(x:y), sphingomyelin with two esterified fatty acids having in total x carbons and y double bonds; TEA: thermal energy analyzer; TLC: thin layer chromatography; TMA, trimethyl amine; TMAO, trimethylamineoxide; Trp-P-1, 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole; Trp-P-2, 3-amino-1-methyl-5H-pyrido[3,4-b]indole; WB, whole blood; * free and conjugated metabolites
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