Transcriptome and chromatin structure annotation of liver, CD4+ and CD8+ T cells from four livestock species

Supplementary file 1: Supplementary figures and tables

List of Figures

51	RNA-seq processing pipeline overview. RNA-seq reads were processed with STAR for	
	mapping and Cufflinks for transcript modeling using the reference gene annotation as input	
	and for each sample individually. Modelled transcripts were then merged with Cuffmerge	
	to produce a single gene annotation per species, and the transcripts from this novel gene	
	set were further processed with FEELnc to produce a reliable set of IncRNAs. Reference and	
	novel transcripts and gene expressions were quantified in each sample using the STAR/RSEM	
	pipeline. Differential expression analysis was performed on reference and novel genes with	
	TPM > 0.1 in at least 2 samples using the B/Bioconductor package edgeB	5
S2	BNA-seq mapped read classification into genomic domains For each sample BNA-seq	U
02	manped reads were classified into exonic (1 exon) intronic (2 intr) intergenic (3 ig) and other	
	(A other) reads	6
60	PNA and comple PCA based on the expression of reference genes. Only reference genes	0
33	with a TPM > 0.1 in at least 2 complex were used	7
C 4	with a TPM ≥ 0.1 in at least 2 samples were used	1
54	Gene expression ratio in males versus remaies on chromosomes X or Z. Gene expres-	
	sion was compared in males vs. remaies using the base 10 logarithm of the TPM values.	
	y-axis: the \log_2 of the male/female expression ratio for the genes located on the chromosome	
	of interest. For each plot, the median of these expression ratios is indicated in the title. Left:	
	genes located on chromosome 1 used as a control. Right: genes located on chromosome X	
	for mammals and Z for chicken. x-axis: the position of the gene on the chromosome of interest.	8
S5	Biological Process GO term enrichment analysis for reference genes differentially ex-	
	pressed between liver and T cells. This analysis was performed for each species individu-	
	ally (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver	
	(top) and over-expressed in T cells (bottom).	9
S6	Molecular Function GO term enrichment analysis for reference genes differentially ex-	
	pressed between liver and T cells. This analysis was performed for each species individu-	
	ally (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver	
	(top) and over-expressed in T cells (bottom).	10
S7	Cellular Compartment GO term enrichment analysis for reference genes differentially	
	expressed between liver and T cells. This analysis was performed for each species individ-	
	ually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver	
	(top) and over-expressed in T cells (bottom).	11
<u>S8</u>	GO term enrichment analysis for reference genes differentially expressed between liver	•••
00	and T cells in all species. This analysis was performed for each GO (in column: Biolog-	
	ical Process Molecular Function Cellular Compartment in that order) and for genes over-	
	expressed in liver (top) and over-expressed in T cells (bottom)	12
50	Distribution of EB-AgENCODE transcripts into four positional (known extension alter-	12
39	pative nevel and three adding (mPNA in PNA other PNA) classes (A) Distribution of	
	all EP AgENCODE transportation into positional and adding alagaas; (B) and (C) Distribution of	
	all FR-AgeNCODE transcripts into positional and could classes, (B) and (C) Distribution of	
	FR-AgeNCODE transcripts of each cooling class into positional classes, and of each positional	10
010		13
510	Novel coding FR-AgenCODE genes enrich the set of blood and 1 cell annotated genes.	
	(A) venn diagrams of novel coding genes for each triplet of livestock species (two livestock	
	genes are defined as orthologous if they project to the same numan gene). (B) Gene set	
	enrichment analysis on the human orthologs of the 93 cattle, 52 goat, 74 chicken and 26 pig	
	genes, using EnrichR (Kuleshov et al. 2016; http://amp.pharm.mssm.edu/Enrichr/) on the	
	ARCS4 Tissue dataset (https://amp.pharm.mssm.edu/archs4/). (C) Gene names of the 12	
	genes that are common to two livestock species. Out of these 12, 8 are coding for T cell	
	Receptor Alpha or Beta Variable genes.	14
S11	RNA-seq sample PCA based on FR-AgENCODE gene expression.	15
S12	LncRNA gene features. Genomic structure features (left) and expression (right) are indicated	
	for protein coding genes (coding) and IncRNA genes (Inc). The expression (TPM) is given	
	for the three tissues and the four species; IncRNA genes are between 8- and 43-fold less	
	expressed than protein coding genes (expression median: 0.4 vs. 10 TPM respectively)	16

S13	Syntenic IncRNAs conserved between the 4 livestock species and human. The 6 syn-	
	tenic IncRNAs conserved in the 4 livestock species and human are represented in green and	
	their surrounding protein coding genes in orange. Distances between the genes are indicated	
	either in base pair or in kilo base pair (k). A distance of 0 means the genes are overlapping.	
	A distance in red means a lower confidence in the orthology relationship for this species, af-	
	ter inspection of the distances found in the other species. When the IncRNA was not known	
	before, a new gene name is proposed (asterisk).	17
S14	ATAC-seq read pair summary statistics. For each species and sample (labelled by its	
	tissue and animal number), the number of initial read pairs (1_init), of read pairs obtained after	
	trimming (2_trim), mapping (3_map), proper pairing (4_pair), q10 filtering (5_q10), mitochondrial	
045	read removal (6_nonmt), and PCR duplicate read removal (7_nondup) are shown.	18
S15	AIAC-seq peak size distribution. For each species, the size distribution of tissue and	10
010	merged (i.e. across all tissues) AIAC-seq peaks are provided.	19
516	Density of AIAC-seq peaks around starts of novel (i.e. not known) transcripts for cattle	00
017	(A), goat (B), chicken (C) and pig (D)	20
517	ATAC-seq peak distribution into genomic domains. For each species, are provided: the	
	percentage of ATAC-seq peaks that are exonic, intronic, overlapping the TSS of a reference	
	gene extended by 0, 1 or 5 Kb on each side, overlapping the 115 of a reference gene extended	01
C10	Dy 0, 1 of 5 Kb off each side and intergenic.	21
010 010	Schematic illustration of the per gone and cross cample PNA sog versus ATAC sog oer	22
319	relation analysis	22
S20	Correlation between reference gene expression and chromatin accessibility at the TSS	20
020	for goat. For each pair of reference gene and ATAC-seq peak overlapping the reference gene	
	TSS extended by 1 Kb on each side, the Pearson correlation was computed between the base	
	10 logarithm of the gene TMM and the base 10 logarithm of the normalized ATAC-seg signal	
	at the peak. The distribution was then plotted for non DE genes (A, top) and for DE genes (B.	
	bottom).	24
S21	ATAC-seq sample heatmap and hierarchical clustering based on the 1083 level 4 ATAC-	
	seq peaks. Pairwise similarity between samples is computed as the Pearson correlation	
	between the base 10 logarithm of the normalized reads of the 1083 ATAC-seq peaks common	
	to 4 species. These similarities are plotted as a heatmap, where samples appear both as rows	
	and columns and are labelled by their species, tissue and the sex of the animal. The color	
	of each heatmap cell also reflects the similarity (Pearson correlation) between each sample	
	pair (the lighter, the higher). Hierarchical clustering is performed using one minus the squared	
	Pearson correlation as a distance and the complete linkage aggregation method	25
S22	Relation between non promoter proximal chromatin accessibility conservation and dif-	
	ferential accessibility. This figure is the same as main Figure 6 but is done restricting to	
	ATAC-seq peaks not overlapping the TSS+-1kb in any of the species where it is present.	
	Phastcons scores of these ATAC-seq peaks were plotted after dividing the human hits ac-	
	cording to both their similarity level (between 1 and 3, x-axis, level 4 removed because there	
	were less than 50 peaks in a category) and their differential accessibility (DA) status (DA in	
	at least one species or DA in none of the 4 species, boxplot color). Although the phastcons	
	score obviously increases with the similarity level, it is clear that, for a given similarity level, the	
	phastcons score is higher for DA human hits than for non DA human hits (all similarity levels,	
	p-values $< 1.2 \times 10^{-60}$ overall, Wilcoxon tests) (number of elements the boxplots from left to	00
000	right: 151,783, 19,732, 11,922, 3,317, 2,100, 1,082).	26
523	HI-C read summary statistics. For each species and animal, are plotted the number of:	
	(2 reported) pairs after sequencing (1_initial), pairs with both reads mapped on the genome	
	(2-reported), pairs in a valid configuration, that is when the sufficient of the distances from the	
	(3 valid) pairs after removing PCB duplicates (4 valid rmdup) and the number of road pairs	
	supporting proximity between two different chromosomes (5 trans)	97
		<u> </u>

S24	Method for predicting Hi-C A and B compartments. Illustration of the A/B compartment calling workflow using the interaction matrices of the first chromosome in pig. Upper panels: interaction matrices at different steps of the workflow. Lower panel: the first three eigenvectors are shown along the chromosome to illustrate the relevance of PC#1 as the discriminative	
	value to segregate bins between A and B compartments.	28
S25	CTCF motif density and local interaction score (left) and Directionality Index (DI, right)	
	within and around Hi-C Armatus and Armatus/Juicer TADs.	29
S26	Distribution of Hi-C A and B compartments along each chromosome and for each ani-	
	mal. Genome-wide overview of compartment labels per 500Kb bin in pig for each animal. A general coherence can be observed across replicates. White regions are devoid of any called	
	compartment.	30

List of Tables

S1	Completed experiments. Available data per animal, sample and experimental assay. Green: completed experiment. Red (NA): not available. Hi-C was attempted on liver samples only, and succeeded on all species but cattle. Consequently, ATAC-seq was not attempted on the	
	cattle liver samples either.	32
S2	Genome and reference gene annotation used for each species.	33
S3	Software used in the FR-AgENCODE project.	34
S4	RNA-seq read mapping statistics. Number and proportion of mapped and uniquely mapped	
	RNA-seq read pairs for each species, replicate and tissue	36
S5	Differentially Expressed (DE) reference genes. Number of differentially expressed refer-	
	ence genes obtained by the two statistical models (see main text and Methods)	37
S6	Genes consistently over-expressed in CD4+ compared to CD8+ or reciprocally, in four	
	livestock species. For the 39 genes consistently seen as over-expressed in CD4+ with	
	respect to CD8+ (10 genes) or reciprocally (29 genes), are indicated: the human gene ID, the	
	gene name in a column that indicates the cell type in which the gene is over-expressed, the	
	TPM in human CD4+ and CD8+ cells from the Blueprint project (CD4-positive, alpha-beta T	
	cell and CD8-positive, alpha-beta T cell respectively), whether or not these expression levels	
	are consistent with the differential behavior observed in livestock, the expression in livestock	
	CD4+ and CD8+ (average across samples) and a reference describing the role of the gene in	~~
07		38
S/	FR-Agencode transcript positional classification.	39
58	FR-AgenCODE novel coding genes and their orthology with human	40
59	Differentially Expressed (DE) FR-AgENCODE genes. Number of differentially expressed	44
C10	FR-AgeNCODE genes obtained by the two statistical models (see main text and methods).	41
510	includes menocyclic local bar includes that represent 57.68% of these transprints. Loci are bracketed	
	Fields with an astorick (*) indicate the existence of IncRNAs unclassified by EEEI no because	
	they are on unassembled conting: they represent 217, 717, 2,718 and 83 lncRNAs in cattle	
	age of and sectively and are not listed here	42
S11	FR-AgENCODE transcript coding classification	42 43
S12	Number of ATAC-seq neaks per species	44
S13	Number of differentially accessible (DA) ATAC-seq peaks per species.	45
S14	Hi-C read pair mapping statistics. Number of read pairs of different categories. <i>Initial</i> : total	10
• • •	number of sequenced read pairs. <i>Reported</i> : pairs with both reads mapped on the genome.	
	Valid: uniquely mapped pairs with an estimated insert size (sum of the distances from the	
	reads to their next downstream HindIII genomic sites) between 20bp and 1Kb. Valid.rmdup:	
	valid read pairs after duplication removal that were used to build the interaction matrices.	
	<i>Trans</i> : pairs with reads on different chromosomes.	46
S15	Statistics of Hi-C TADs and A/B compartments.	47

per species, and the transcripts from this novel gene set were further processed with FEELnc to produce Figure S1: RNA-seq processing pipeline overview. RNA-seq reads were processed with STAR for mapping and Cufflinks for transcript modeling using the reference gene annotation as input and for each sample individually. Modelled transcripts were then merged with Cuffmerge to produce a single gene annotation a reliable set of IncRNAs. Reference and novel transcripts and gene expressions were quantified in each sample using the STAR/RSEM pipeline. Differential expression analysis was performed on reference and novel genes with TPM \geq 0.1 in at least 2 samples using the R/Bioconductor package **edgeR**.

Figure S2: **RNA-seq mapped read classification into genomic domains.** For each sample, RNA-seq mapped reads were classified into exonic (1_exon), intronic (2_intr), intergenic (3_ig) and other (4_other) reads.

Figure S3: **RNA-seq sample PCA based on the expression of reference genes.** Only reference genes with a TPM \ge 0.1 in at least 2 samples were used.

Figure S4: Gene expression ratio in males versus females on chromosomes X or Z. Gene expression was compared in males vs. females using the base 10 logarithm of the TPM values. *y*-axis: the \log_2 of the male/female expression ratio for the genes located on the chromosome of interest. For each plot, the median of these expression ratios is indicated in the title. Left: genes located on chromosome 1 used as a control. Right: genes located on chromosome X for mammals and Z for chicken. *x*-axis: the position of the gene on the chromosome of interest.

Figure S5: Biological Process GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S6: Molecular Function GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S7: Cellular Compartment GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S8: GO term enrichment analysis for reference genes differentially expressed between liver and T cells in all species. This analysis was performed for each GO (in column: Biological Process, Molecular Function, Cellular Compartment in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S9: Distribution of FR-AgENCODE transcripts into four positional (known, extension, alternative, novel) and three coding (mRNA, IncRNA, otherRNA) classes. (A) Distribution of all FR-AgENCODE transcripts into positional and coding classes; (B) and (C) Distribution of FR-AgENCODE transcripts of each coding class into positional classes, and of each positional class into coding classes respectively.

U	Novel coding FR-AgENCODE genes orthologous to human and shared by at least 2 livestock species BIK GCNA	TRBV4-1 TRBV4-1 TRBV27 TRAV14DV4 TRAV12-3	TRAV17 TRBV3-1 TRBV25-1 INAFM2 FAM200B	
	Bos taurus (Holstein)	Capra hircus	Gallus gallus (White Leghorn)	Sus scrofa (Large White)
ю	REGULATORY T CELLSp-value: 0.0019THYMUS (BULK TISSUE)p-value: 0.0044BLOOD PBMCp-value: 0.0044CD4+ T CELLp-value: 0.0095PERIPHERAL BLOODp-value: 0.0194T LYMPHOCYTEp-value: 0.0374	PERIPHERAL BLOODp-value: 4.29e-29THYMUS (BULK TISSUE)p-value: 6.83 e-25BLOOD PBMCp-value: 4.00e-21REGULATORY T CELLSp-value: 4.00e-21CD4+T CELLp-value: 6.07e-20TLYMPHOCYTEp-value: 6.07e-20	BLOOD PBMC p-value: 0.0431	COLON (BULK TISSUE) p-value: 0.0073 CD4+ T CELL p-value: 0.0249 REGULATORY T CELL p-value: 0.0249 HUMAN ZYGOTE p-value: 0.0249 SMALL INTESTINE (BULK) p-value: 0.0249 OOCYTE p-value: 0.0249
	Cattle Goat	73 Chicken	Cattle Goat	Pig
∢				

//amp.pharm.mssm.edu/Enrichr/) on the ARCS4 Tissue dataset (https://amp.pharm.mssm.edu/archs4/). Figure S10: Novel coding FR-AgENCODE genes enrich the set of blood and T cell annotated genes. (A) Venn diagrams of novel coding genes for each triplet of livestock species (two livestock genes are defined as orthologous if they project to the same human gene). (B) Gene set enrichment analysis on the human orthologs of the 93 cattle, 52 goat, 74 chicken and 26 pig genes, using EnrichR (Kuleshov et al. 2016; http: (C) Gene names of the 12 genes that are common to two livestock species. Out of these 12, 8 are coding for T cell Receptor Alpha or Beta Variable genes.

Figure S11: RNA-seq sample PCA based on FR-AgENCODE gene expression.

Figure S12: LncRNA gene features. Genomic structure features (left) and expression (right) are indicated for protein coding genes (coding) and IncRNA genes (Inc). The expression (TPM) is given for the three tissues and the four species; IncRNA genes are between 8- and 43-fold less expressed than protein coding genes (expression median: 0.4 vs. 10 TPM respectively).

Figure S13: Syntenic IncRNAs conserved between the 4 livestock species and human. The 6 syntenic protein coding genes in orange. Distances between the genes are indicated either in base pair or in kilo base pair (k). A distance of 0 means the genes are overlapping. A distance in red means a lower confidence in ncRNAs conserved in the 4 livestock species and human are represented in green and their surrounding the orthology relationship for this species, after inspection of the distances found in the other species. When the IncRNA was not known before, a new gene name is proposed (asterisk).

Figure S14: **ATAC-seq read pair summary statistics.** For each species and sample (labelled by its tissue and animal number), the number of initial read pairs (1_init), of read pairs obtained after trimming (2_trim), mapping (3_map), proper pairing (4_pair), q10 filtering (5_q10), mitochondrial read removal (6_nonmt), and PCR duplicate read removal (7_nondup) are shown.

Figure S15: **ATAC-seq peak size distribution.** For each species, the size distribution of tissue and merged (i.e. across all tissues) ATAC-seq peaks are provided.

Figure S16: Density of ATAC-seq peaks around starts of novel (i.e. not known) transcripts for cattle (A), goat (B), chicken (C) and pig (D)

Figure S17: **ATAC-seq peak distribution into genomic domains.** For each species, are provided: the percentage of ATAC-seq peaks that are exonic, intronic, overlapping the TSS of a reference gene extended by 0, 1 or 5 Kb on each side, overlapping the TTS of a reference gene extended by 0, 1 or 5 Kb on each side and intergenic.

Figure S18: Per sample promoter accessibility for four reference gene expression quartiles in pig.

Figure S19: Schematic illustration of the per-gene and cross-sample RNA-seq versus ATAC-seq cor-

relation analysis.

Differentially expressed goat reference genes

В

Figure S20: Correlation between reference gene expression and chromatin accessibility at the TSS for goat. For each pair of reference gene and ATAC-seq peak overlapping the reference gene TSS extended by 1 Kb on each side, the Pearson correlation was computed between the base 10 logarithm of the gene TMM and the base 10 logarithm of the normalized ATAC-seq signal at the peak. The distribution was then plotted for non DE genes (A, top) and for DE genes (B, bottom).

Figure S21: **ATAC-seq sample heatmap and hierarchical clustering based on the 1083 level 4 ATAC-seq peaks.** Pairwise similarity between samples is computed as the Pearson correlation between the base 10 logarithm of the normalized reads of the 1083 ATAC-seq peaks common to 4 species. These similarities are plotted as a heatmap, where samples appear both as rows and columns and are labelled by their species, tissue and the sex of the animal. The color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample pair (the lighter, the higher). Hierarchical clustering is performed using one minus the squared Pearson correlation as a distance and the complete linkage aggregation method.

Figure S22: **Relation between non promoter proximal chromatin accessibility conservation and differential accessibility.** This figure is the same as main Figure 6 but is done restricting to ATAC-seq peaks not overlapping the TSS+-1kb in any of the species where it is present. Phastcons scores of these ATAC-seq peaks were plotted after dividing the human hits according to both their similarity level (between 1 and 3, x-axis, level 4 removed because there were less than 50 peaks in a category) and their differential accessibility (DA) status (DA in at least one species or DA in none of the 4 species, boxplot color). Although the phastcons score obviously increases with the similarity level, it is clear that, for a given similarity level, the phastcons score is higher for DA human hits than for non DA human hits (all similarity levels, p-values < 1.2×10^{-06} overall, Wilcoxon tests) (number of elements the boxplots from left to right: 151,783, 19,732, 11,922, 3,317, 2,100, 1,082).

Figure S23: **Hi-C read summary statistics.** For each species and animal, are plotted the number of: initial read pairs after sequencing (1_initial), pairs with both reads mapped on the genome (2_reported), pairs in a valid configuration, that is when the sum of the distances from the reads to their next HindIII restriction sites downstream is comprised between 20bp and 1Kb (3_valid), pairs after removing PCR duplicates (4_valid_rmdup) and the number of read pairs supporting proximity between two different chromosomes (5_trans).

Identification of A/B compartments from Hi-C contact matrices

1. Merge the biological replicates by adding their read counts for each pair of bins

The Hi-C contact matrices from the 4 replicates (Sus scrofa, chromosome 1)

Normalization: matrix balancing and observed/expected (based on distance) (per chromosome)
Pearson correlation matrix from each pair of bins

Raw matrix, normalized matrix and correlation matrix (Sus scrofa, chromosome 1)

3. Principal Component Analysis on the bins

Figure S24: **Method for predicting Hi-C A and B compartments.** Illustration of the A/B compartment calling workflow using the interaction matrices of the first chromosome in pig. Upper panels: interaction matrices at different steps of the workflow. Lower panel: the first three eigenvectors are shown along the chromosome to illustrate the relevance of PC#1 as the discriminative value to segregate bins between A and B compartments.

Figure S25: CTCF motif density and local interaction score (left) and Directionality Index (DI, right) within and around Hi-C Armatus and Armatus/Juicer TADs.

Figure S26: Distribution of Hi-C A and B compartments along each chromosome and for each animal. Genome-wide overview of compartment labels per 500Kb bin in pig for each animal. A general coherence can be observed across replicates. White regions are devoid of any called compartment.

Table S1: **Completed experiments.** Available data per animal, sample and experimental assay. Green: completed experiment. Red (NA): not available. Hi-C was attempted on liver samples only, and succeeded on all species but cattle. Consequently, ATAC-seq was not attempted on the cattle liver samples either.

RNA-seq									
Cattle	cattle1	cattle2	cattle3	cattle4	Goat	goat 1	goat2	goat3	goat4
cd4					cd4				
cd8	NA				cd8				
liver					liver				
Chicken	chicken1	chicken2	chicken3	chicken4	Pig	pig1	pig2	pig3	pig4
cd4	NA	NA			cd4	NA			
cd8	NA	NA	NA		cd8				
liver					liver				

AT	Δ.	c.	c	P	n
AI	л	C.	а	С	ч

Cattle	cattle1	cattle2	cattle3	cattle4	Goat	goat l	goat2	goat3	goat4
cd4					cd4		NA		
cd8					cd8				
liver	NA	NA	NA	NA	liver				
Chicken	chicken1	chicken2	chicken3	chicken4	Pig	pig1	pig2	pig3	pig4
cd4				NA	cd4				
cd8	NA		NA	NA	cd8				
liver					liver				NA

Hi-C

Cattle	cattle1	cattle2	cattle3	cattle4	Goat	goat l	goat2	goat3	goat4
liver	NA	NA	NA	NA	liver				
Chicken	chicken1	chicken2	chicken3	chicken4	Pig	pigl	pig2	pig3	pig4
liver					liver				

Table S2: Genome and reference gene annotation used for each species.

	Re	ference genom	e assembl	у	Referenc	e gene annotati	on
Species	Version	# fasta sequences	Size (in Gb)	Contig N50 (in Mb)	Source	# genes	# transcripts
Cattle	UMD3.1	3,317	2.67	0.1	Ensembl v90	24,616	26,740
Goat	CHIR_ARS1	29,907	2.92	26.2	NCBI vCHIR_ARS1	28,931	53,266
Chicken	GalGal5	23,475	1.23	2.9	Ensembl v90	24,881	38,118
Pig	Sscrofa11.1	613	2.5	48.2	Ensembl v90	25,880	49,448

Ö
ð
· —
Ο
0
ш
$\overline{\mathbf{n}}$
\mathbf{X}
C)
Ž
Щ
σ
4
ĩ
m
Φ
ž
_
σ
ed
sed
nsed
used
e used
ire used
are used
vare used
tware used
ftware used
oftware used
Software used
Software used
3: Software used
33: Software used
S3: Software used
S3: Software used
le S3: Software used
ble S3: Software used
able S3: Software used

R	ftware version	Software URL
	3.3	https://www.r-project.org/about.html
python 2.	7.2	<pre>https://www.python.org/</pre>
samtools 1.	3.1	<pre>http://www.htslib.org/</pre>
bedtools 2.	26.0	<pre>nttp://bedtools.readthedocs.io/en/latest/</pre>
kentUtils 36	12.1.0	<pre>nttps://github.com/ENCODE-DCC/kentUtils</pre>
bwtool No	v 2015 version	<pre>nttps://github.com/CRG-Barcelona/bwtool/wiki</pre>
emboss 6.	4.0.0	<pre>http://emboss.sourceforge.net/</pre>
fastqc 0.	11.2	<pre>https://www.bioinformatics.babraham.ac.uk/projects/fastqc/</pre>
cutadapt 1.	8.3	<pre>nttp://cutadapt.readthedocs.io/en/stable/guide.html</pre>
trim_galore 0.	4.0	https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
picardtools 2.	1.1	<pre>https://broadinstitute.github.io/picard/</pre>
STAR 2.	5.1b	<pre>https://github.com/alexdobin/STAR</pre>
cufflinks 2.	2.1	<pre>nttp://cole-trapnell-lab.github.io/cufflinks/</pre>
RSEM 1.	3.0	<pre>nttp://deweylab.biostat.wisc.edu/rsem/README.html</pre>
FEELnc 0.	1.0	<pre>https://github.com/tderrien/FEELnc</pre>
Bowtie2 2.	3.3.1	<pre>nttp://bowtie-bio.sourceforge.net/bowtie2/index.shtml</pre>
Macs2 2.	1.1.20160309	<pre>nttps://chipster.csc.fi/manual/macs2.html</pre>
fimo 4.	11.1	<pre>nttp://meme-suite.org/doc/fimo.html</pre>
HiC-Pro 2.	9.0	<pre>http://nservant.github.io/HiC-Pro/</pre>
Armatus 2,	1	https://www.cs.cmu.edu/~ckingsf/software/armatus/
HiTC 1.	18.1	<pre>nttps://bioconductor.org/packages/release/bioc/html/HiTC.html</pre>
Juicer tools 1.	5.3	<pre>nttps://github.com/theaidenlab/juicer/wiki/Juicer-Tools-Quick-Start</pre>
Last 95	6	nttp://last.cbrc.jp/

Table S4: **RNA-seq read mapping statistics.** Number and proportion of mapped and uniquely mapped RNA-seq read pairs for each species, replicate and tissue.

				#	% read	# uniquely	% uniquely	% uniquely
Species	Tissue	Animal	# read pairs	# read pairs	pairs	mapped read	mapped read	mapped read
				mapped	mapped	pairs	manned)	total)
	cd4	cattle1	115 308 640	111 206 516	96.4	108 830 546	07.0	04.3
	cd4	cattle2	118 918 186	114 474 132	96.3	112 127 763	98.0	94.3
	cd4	cattle3	121 389 996	113 765 363	93.7	108 717 357	95.6	89.6
	cd4	cattle4	116 083 510	112 298 028	96.7	110 019 926	98.0	94.8
	cd8	cattle2	117 869 348	113 617 513	96.4	111 375 385	98.0	94.5
Cattle	cd8	cattle3	118 910 270	114 458 706	96.3	111 966 825	97.8	94.2
	cd8	cattle4	121 883 485	117 905 219	96.7	115 423 917	97.9	94.7
	liver	cattle1	115 371 212	111 956 767	97.0	110 499 020	98.7	95.8
	liver	cattle2	119 870 689	116 728 118	97.4	115 092 798	98.6	96.0
	liver	cattle3	136 710 805	132 763 513	97.1	130 973 598	98.7	95.8
	liver	cattle4	118 889 544	115 841 946	97.4	114 125 584	98.5	96.0
	cd4	goat1	133 365 348	130 269 121	97.7	123 559 681	94.8	92.6
	cd4	goat2	132 983 117	128 521 637	96.6	121 198 446	94.3	91.1
	cd4	goat3	133 831 464	129 566 423	96,8	122 990 885	94,9	91,9
	cd4	goat4	130 150 700	126 874 881	97,5	121 461 169	95,7	93,3
	cd8	goat1	130 970 787	127 546 631	97.4	120 904 297	94.8	92,3
	cd8	goat2	131 654 878	128 355 710	97,5	121 468 794	94,6	92,3
Goat	cd8	goat3	132 923 610	129 276 688	97,3	123 235 599	95,3	92,7
	cd8	goat4	131 413 248	127 239 980	96,8	121 762 207	95,7	92,7
	liver	goat1	112 623 152	110 432 315	98,1	105 943 818	95,9	94,1
	liver	goat2	120 492 856	117 992 580	97,9	112 453 956	95,3	93,3
	liver	goat3	133 931 176	131 150 414	97,9	126 458 023	96,4	94,4
	liver	goat4	125 330 385	122 259 872	97,6	118 111 570	96,6	94,2
	cd4	chicken3	91 907 306	86 645 024	94,3	83 374 510	96,2	90,7
	cd4	chicken4	90 843 387	79 772 579	87,8	76 778 803	96,2	84,5
	cd8	chicken4	90 476 514	82 431 332	91,1	79 685 312	96,7	88,1
Chicken	liver	chicken1	119 681 527	114 944 560	96,0	111 122 525	96,7	92,8
	liver	chicken2	107 777 068	103 770 521	96,3	100 787 680	97,1	93,5
	liver	chicken3	121 616 481	116 940 968	96,2	113 315 177	96,9	93,2
	liver	chicken4	124 089 440	119 195 187	96,1	115 442 821	96,9	93,0
	cd4	pig2	116 273 646	113 997 546	98,0	109 051 735	95,7	93,8
	cd4	pig3	118 260 498	115 042 891	97,3	110 755 493	96,3	93,7
	cd4	pig4	114 159 672	111 934 574	98,1	108 379 228	96,8	94,9
	cd8	pig1	231 339 734	225 402 022	97,4	219 199 568	97,2	94,8
	cd8	pig2	116 383 341	114 513 826	98,4	110 146 147	96,2	94,6
Pig	cd8	pig3	116 696 412	113 825 826	97,5	110 613 640	97,2	94,8
	cd8	pig4	117 449 531	114 751 230	97,7	108 598 741	94,6	92,5
	liver	pig1	116 242 745	113 660 238	97,8	110 849 470	97,5	95,4
	liver	pig2	117 818 284	115 364 464	97,9	111 627 222	96,8	94,7
	liver	pig3	110 567 402	108 214 816	97,9	105 590 955	97,6	95,5
	liver	pig4	114 769 769	112 137 997	97,7	109 296 648	97,5	95,2

Table S5: **Differentially Expressed (DE) reference genes.** Number of differentially expressed reference genes obtained by the two statistical models (see main text and Methods)

Differential analysis	Tierre 1	Tierre 2	log(Tissue2/		Number of DE 1	reference genes	
model	Tissue 1	Tissue 2	Tissue1)	Cattle	Goat	Chicken	Pig
	cd4	cd8	>0	751	1098	1 504	867
	cd4	cd8	<0	463	748	592	604
1 (tionus pairs)	cd4	liver	>0	5048	6 3 0 3	5 1 1 2	5 72 5
I (ussue pairs)	cd4	liver	<0	3887	4304	3 3 5 1	3 653
	cd8	liver	>0	4890	6134	4 146	5 66 5
	cd8	liver	<0	3911	4397	3 087	3 792
2 (teall us liver)	cd	liver	>0	4992	6188	4 307	5 66 6
2 (teen vs nver)	cd	liver	<0	3943	4384	2 6 4 0	3 772

Table S6: Genes consistently over-expressed in CD4+ compared to CD8+ or reciprocally, in four livestock species. For the 39 genes consistently seen as over-expressed in CD4+ with respect to CD8+ (10 genes) or reciprocally (29 genes), are indicated: the human gene ID, the gene name in a column that indicates the cell type in which the gene is overexpressed, the TPM in human CD4+ and CD8+ cells from the Blueprint project (CD4-positive, alpha-beta T cell and CD8-positive, alpha-beta T cell respectively), whether or not these expression levels are consistent with the differential behavior observed in livestock, the expression in livestock CD4+ and CD8+ (average across samples) and a reference describing the role of the gene in blood cells when available.

Human gene id	Gene name correspond expre	(in column ing to over- mion)	TPM in	human	Consistency between	TPM is	a cattle	TPM I	n goat	TPM in	chicken	TPM	in pig
	CD4+	CD8+	CD4+	CD8+	human (FC>1)	CD4+	CD8+	CD4+	CD8+	CD4+	CD8+	CD4+	CD8+
ENSG00000102245 [1]	CD40LG		27.0	0.5	yers	97.9	7.6	51.6	10.5	164.8	7.5	153.4	28.7
ENSG00000106537	TSBAN 13		0.4	0.5	no	118.8	62.6	93.9	32.6	4.0	0.5	3.4	1.0
ENSG00000107485 [2]	GATA3		6.0	4.0	yers	37.7	11.5	43.3	18.8	113.5	7.6	51.1	30.0
ENSG00000115602	IL1KL1		NA	0.1	NA	4.7	0.3	5.2	2.2	5.5	0.2	4.2	1.0
ENSG00000126353 [3]	CCR7		312.0	102.0	yers	33.7	11.3	164.5	44.6	96.2	21.7	87.1	33.2
ENSG00000130396	AFDN		0.9	0.3	yers	6.6	2.9	17.8	2.8	3.3	0.8	2.4	0.1
ENSG00000163599 [4]	CTLA4		39.0	2.0	yers	6.1	0.6	19.8	1.4	635.6	16.9	15.0	2.2
ENSG00000178199	ZC3H12D		17.0	6.0	yers	30.5	13.6	45.7	9.4	1,384.7	134.7	26.3	4.5
ENSG00000178562 [5]	CD28		161.0	74.0	yers	34.4	9.3	91.5	11.0	208.3	14.8	107.4	27.6
ENSG00000178573 [6]	MAP		3.0	1.0	yers	13.2	1.5	11.8	5.4	6.8	0.3	15.0	2.5
ENSG00000139567		ACVEL1	NA	NA	NA	5.9	48.0	5.0	18.9	5.2	10.1	0.0	0.2
ENSG00000169252 [7]		AD KB2	0.6	2.0	yers	3.9	17.9	0.6	7.3	57.8	219.3	2.7	15.2
ENSG00000156966		B3GNT7	0.1	0.2	yers	1.7	7.2	0.2	0.7	0.0	2.8	0.0	1.4
ENSG00000136573		BLK	1.0	4.0	yers	15.9	27.0	3.8	53.2	3.9	15.4	1.5	32.8
ENSG00000182985		CADM1	0.2	NA	NA	4.1	21.4	1.1	3.5	1.6	3.9	0.0	0.2
ENSG00000271503 [8]		CCL5	8.0	38.0	yers	33.0	1,205.8	16.2	2,009.6	1.2	102.1	190.2	2,465.9
ENSG00000172116 [9]		CD8B	2.0	210.0	yers	9.7	260.7	17.6	514.5	0.5	173.0	1.1	115.4
ENSG00000109943 [10]		CRTAM	3.0	54.0	yers	2.3	16.3	4.0	16.2	0.5	52.0	3.1	37.6
ENSG00000100592		DAAM1	4.0	3.0	no	5.3	5.0	2.1	2.8	0.3	0.3	5.5	5.7
ENSG00000035664 [11]		DAPK2	0.3	0.9	yers	1.8	8.2	0.9	10.1	3.0	11.7	14.9	60.1
ENSG00000213853		EMP2	0.6	0.4	no	0.1	0.7	1.9	6.9	0.1	0.5	0.1	0.9
ENSG00000163508 [12]		EOMES	0.9	1.0	yers	1.0	11.3	1.0	17.5	2.9	133.4	1.0	12.5
EN5600000139132		FGD4	0.2	2.0	yers	3.3	8.5	0.9	2.3	0.9	6.8	0.2	5.3
EN5600000160219		GAB3	4.0	4.0	no	3.3	8.6	9.2	25.1	4.4	38.4	8.9	27.2
EN5600000125245		GPR18	17.0	26.0	yers	7.8	22.8	9.0	22.8	13.5	104.8	39.0	297.6
ENSG00000100385 [13]		IL2KB	7.0	9.0	yers	42.7	131.6	134.9	573.8	30.2	190.7	62.6	205.2
EN560000157404		KIT	0.9	2.0	yes	2.4	7.9	2.4	6.4	0.1	0.3	0.0	1.2
EN5G0000086730 [14]		LAT2	0.8	4.0	yes	46.1	156.3	20.0	46.2	2.0	11.9	22.1	123.7
EN500000189067		LITAF	68.0	58.0	no	24.0	98.1	26.0	82.3	12.3	41.5	4.6	21.4
ENSG00000158186		MRAS	0.1	NA	NA	0.9	5.9	2.1	6.4	16.4	32.9	0.0	0.0
EN5G00000100311		PDGFB	0.9	NA	NA	6.1	25.8	2.2	8.6	0.2	0.9	0.7	5.6
ENSG00000115956		PLEK	2.0	22.0	yers	10.4	32.1	9.1	52.4	36.8	43.0	5.2	55.9
ENSG00000141956		PKDM15	5.0	2.0	80	1.8	1.8	3.4	3.0	7.6	3.3	3.4	3.4
EN5600000198915		RASGEF1A	0.1	0.1	no	3.3	8.3	2.5	10.8	27.6	61.8	0.3	3.0
EN5600000119729		NHOQ	6.0	4.0	no	18.1	74.3	14.5	45.9	0.6	8.9	2.9	16.5
ENSG00000136158 [15]		SPRY2	NA	1.0	yes	1.0	23.5	0.6	11.3	2.0	66.0	0.1	40.5
EN5600000204634		TBC1D8	0.6	2.0	yes	12.6	62.9	5.8	17.0	0.3	0.6	0.2	0.5
EN560000070759		TESK2	6.0	6.0	80	4.8	15.2	6.9	29.1	3.3	9.5	5.6	39.0
EN5600000165914		TTC7B	0.4	0.5	yers	0.4	2.0	0.2	0.7	1.0	2.5	0.1	0.6

 [1] Shertahiti, Marshell D, Shiroy H EL, Danson DT Crosse lacking of the CH40 lggad on homm CD4- T by mphony in generative accordinalizery signal that up-regulation IL-4 synthesis. The Journal of Immunology 1996 May 1;156(9):3133-40.
[2] Tandoman B, Sarda J E, Baterio J E, Baterio J W, GATA-J Function in name and algorithe immunoly 2010 May 2;1(2):91-20.
[3] Forter T, Bandes Mahari A, Gaterio J E, Baterio J W, GATA-J Function in name and algorithe immunoly 2010 May 2;1(2):91-20.
[4] Zommor T, Zikesh R, Dare T, Kim AM, Matha D, Bonold C. Engle of give expression route is hand-upped of reglatory T of Bytomytry to the YER. Naruw immunology 2018 Mar;19(3):291.
[5] Ennotes II, Hakes V, Kopere G, Wina A, Baterio JP, Gillis continuations: Trans and analyzer of reglatory T of Bytomytry and the YER. Naruw immunology 2018 Mar;19(3):291.
[5] Ennotes II, Hakes V, Kopere G, Wina A, Bateriona JP, CEBS continuations: Trans and salarity and the Yeans. Naruw Sinte Mark V Baterion and the Sinte Yean Sinte Yean Sinte Mark V Baterion and Sinte Yean c6(12):1236.

Table S7: FR-AgENCODE transcript positional classification.

Species	Total #	kno	wn	exter	nsion	alterr	alive	no	vel
spectres	Code IV	#	96 ot total	#	% ot total	#	90 ot total	#	90 ot total
Cattle	84,971	11,736	13.8	2,500	2.9	40,813	48.0	29,922	35.2
Goat	78,091	29,520	37.8	2,583	3.3	28,891	37.0	17,097	21.9
Chicken	57,817	15,890	27.5	3,018	5.2	28,065	48.5	10,838	18.7
Pig	77,540	23,921	30.8	2,702	3.5	35,062	45.2	15,855	20.4
Concier	known.	mRNA	known.	ncRNA	known.d	therRNA			
opecies	#	% of known	#	% of known	#	% of known			
Cattle	11,576	98.6	13	0.1	147	1.3			
Goat	26,973	91.4	1,163	3.9	1,384	4.7			
Chicken	14,765	92.9	882	5.5	249	1.6	1		
Pig	23,701	99.1	96	0.4	124	0.5			
Species	extensio	n.mRNA	extension	LINCRINA	extension.	otherRNA			
species	#	% of extension	#	% of extension	#	% of extension			
Cattle	2,497	99.9	0	0.0	3	0.1			
Goat	2,351	91.0	100	3.9	132	5.1			
Chicken	2,982	98.8	33	1.1	3	0.1			
Pig	2,694	99.7	5	0.2	3	0.1			
Concier	alternativ	e.mRNA	alternativ	e.incRNA	alternative	otherRNA			
species	#	% of alternative	#	% of alternative	#	% of alternative			
Cattle	40,770	99.9	0	0.0	43	0.1			
Goat	26,554	91.9	984	3.4	1,353	4.7			
Chicken	27,470	97.9	399	1.4	196	0.7			
Pig	34,822	99.3	226	0.6	14	0.0			
Species	novel.r	mRNA	novel.h	ncRNA	novel.ot	herRNA			
Species	#	% of novel	#	% of novel	#	% of novel			
Cattle	4,958	16.6	22,711	75.9	2,253	7.5			
Goat	2,949	17.2	11,617	67.9	2,531	14.8			
Chicken	2,350	21.7	6,797	62.7	1,091	15.6			
Pig	2,504	15.8	12,284	77.5	1,067	6.7			

Table S8: FR-AgENCODE novel coding genes and their orthology with human

Species	# FR-	# novel FR-	# novel coding FR-	that can be p humar	projected to a n gene
Species	genes	genes	AgENCODE genes	#	%
Cattle	34,296	19,324	15,611	166	12.3
Goat	28,537	11,545	16,437	85	6.4
Chicken	20,408	6,597	13,149	78	15.5
Pig	24,570	10,238	14,054	38	9.5

Table S9: **Differentially Expressed (DE) FR-AgENCODE genes.** Number of differentially expressed FR-AgENCODE genes obtained by the two statistical models (see main text and Methods).

Differential analysis	Tierue 1	Tiomo 2	log(Tissue2/		Number of DE FR-	AgENCODE genes	
model	Tissue 1	Tissue 2	Tissue1)	Cattle	Goat	Chicken	Pig
	cd4	cd8	>0	1 450	1 614	1 940	1 21 1
	cd4	cd8	<0	923	1 056	974	792
1 (ticcus pairs)	cd4	liver	>0	12 23 1	11 782	7 426	9 709
1 (ussue pairs)	cd4	liver	<0	10 311	7 152	5 134	6 386
	cd8	liver	>0	11 810	11 542	5 899	9 880
	cd8	liver	<0	10 573	7 408	4 33 1	6 782
2 (tooll us liver)	cd	liver	>0	12 218	11 773	6 246	10 040
2 (tten vs nver)	cd	liver	<0	10 818	7 448	3 92 9	6 910

contigs; they represent 217, 717, 2,718 and 83 IncRNAs in cattle, goat, chicken and pig respectively and Table S10: IncRNA classification. Number of classified expressed IncRNAs per species. This table includes monoexonic IncRNAs that represent 57-68% of these transcripts. Loci are bracketed. Fields with an asterisk (*) indicate the existence of IncRNAs unclassified by FEELnc because they are on unassembled are not listed here.

			Intergenic	IncRNAs (loci	i) – 88-94%		Genic In	cRNAs (loci) -	- 6-12%
	Total	Same	strand	Dive	rgent		Exonic	Intronic	Intronic
	(transcript)	upstr.	downstr.	≤1kb	>1kb	Convergent	antisense	antisense	sense
0	N C C C C	5522	6438	1450	4494	3328	1235	241	16
Caule	72124	(4671)	(5460)	(1070)	(3588)	(2617)	(851)	(173)	(16)
+200	12051	2431	4050	1744	2908	1966	437	219	109
סטאו	13804	(1940)	(3312)	(1241)	(2233)	(1496)	(220)	(124)	(89)
	*0036	1618	2045	687	1194	1093	646	157	62
CIIICKEII	. 700/	(1390)	(1728)	(539)	(983)	(803)	(510)	(124)	(26)
	10101*	2508	3539	1117	2466	1746	935	216	60
지 명	. /0C7T	(2100)	(3075)	(810)	(2060)	(1436)	(699)	(178)	(58)

Table S11: FR-AgENCODE transcript coding classification.

Enocion	Total #	mR	INA .	Incf	RNA	othe	rRNA	1
species	Total #	#	% ot total	#	% ot total	#	% ot total	
Cattle	84,971	59,801	70.4	22,724	26.7	2,446	2.9	
Goat	78,091	58,827	75.3	13,864	17.8	5,400	6.9	
Chicken	57,817	47,567	82.3	8,111	14.0	2,139	3.7	1
Pig	77,540	63,721	82.2	12,611	16.3	1,208	1.6	1
Enocios	mRNA.	.known	mRNA.e	xtension	mRNA.a	ternative	mRNA	novel
opecies	#	% of mRNA	#	% of mRNA	#	% of mRNA	#	% of mRNA
Cattle	11,576	19.4	2,497	4.2	40,770	68.2	4,958	8.3
Goat	26,973	45.9	2,351	4.0	26,554	45.1	2,949	5.0
Chicken	14,765	31.0	2,982	6.3	27,470	57.8	2,350	4.9
Pig	23,701	37.2	2,694	4.2	34,822	54.6	2,504	3.9
Species	IncRNA	.known	IncRNA.e	extension	IncRNA.a	lternative	Inc RNA	.novel
opecies	#	% of IncRNA	#	% of IncRNA	#	% of IncRNA	#	% of IncRNA
Cattle	13	0.1	0	0.0	0	0.0	22,711	99.9
Goat	1,163	8.4	100	0.7	984	7.1	11,617	83.8
Chicken	882	10.9	33	0.4	399	4.9	6,797	83.8
Pig	96	0.8	5	0.0	226	1.8	12,284	97.4
Enocios	otherRN	A.known	otherRNA.	extension	otherRNA.	alternative	otherRN	A.novel
species	#	% of otherRNA	#	% of otherRNA	#	% of otherRNA	#	% of otherRNA
Cattle	147	6.0	3	0.1	43	1.8	2,253	92.1
Goat	1,384	25.6	132	2.4	1,353	25.1	2,531	46.9
Chicken	249	11.6	3	0.1	196	9.2	1,691	79.1
Pig	124	10.3	3	0.2	14	1.2	1,067	88.3

Table S12: Number of ATAC-seq peaks per species.

Species	Tissue	# ATAC-seq peaks
	cd4	69,661
Cattle	cd8	75,295
	merged	104,985
	cd4	39,526
Cont	cd8	57,084
Goat	liver	14,137
	merged	74,805
	cd4	38,594
Chieken	cd8	49,962
Chicken	liver	75,305
	merged	119,894
	cd4	80,745
Die	cd8	111,457
r 1g	liver	25,885
	merged	149,333

Table S13: Number of differentially accessible (DA) ATAC-seq peaks per species.

Tissue 1	Tissue 2	log(Tissue2/Tissue1)	Species	Number of DA ATAC-seq peaks
		>0	Cost	2,780
		<0	Goal	2,042
Taall	Liver	>0	Chieken	6,663
T Cell	Liver	<0	Chicken	6,991
		>0	Dia	5,467
		<0	Fig	3,678

Table S14: **Hi-C read pair mapping statistics.** Number of read pairs of different categories. *Initial*: total number of sequenced read pairs. *Reported*: pairs with both reads mapped on the genome. *Valid*: uniquely mapped pairs with an estimated insert size (sum of the distances from the reads to their next downstream HindIII genomic sites) between 20bp and 1Kb. *Valid.rmdup*: valid read pairs after duplication removal that were used to build the interaction matrices. *Trans*: pairs with reads on different chromosomes.

Species	Animal	initial	reported	valid	valid.rmdup	trans
	goat1	192,807,889	164,130,417	94,760,148	77,324,040	31,728,784
Cont	goat2	184,098,994	142,479,273	46,280,100	36,346,806	12,858,516
Guat	goat3	192,081,174	149,494,649	44,712,829	37,115,258	13,227,700
	goat4	178,929,203	135,758,984	38,435,525	31,232,835	12,691,582
	chicken 1	172,356,821	136,854,885	100,067,668	74,551,182	35,227,545
Chieken	chicken2	182,654,001	152,646,931	122,151,951	86,044,085	30,151,392
CHICKEII	chicken3	193,520,830	149,648,213	89,183,496	64,824,211	19,603,078
	chicken4	187,696,586	131,460,531	51,115,059	37,069,637	11,768,987
	pig1	168,050,522	139,712,050	111,642,484	82,782,023	25,956,367
Dia	pig2	157,480,346	129,447,277	95,004,214	70,483,985	19,076,359
Pig	pig3	165,285,596	132,403,825	93,115,687	74,144,797	23,560,745
	pig4	165,529,922	131,590,998	82,504,226	62,212,375	18,705,743

Table S15: Statistics of Hi-C TADs and A/B compartments.

Feature	Species	Number	Min size	Mean size	Max size	Genomic coverage (Mb)	Genomic coverage (%)
	Pig	10,982	80,000	184,600	4,520,000	2,027.28	83.25
TADs	Chicken	5,362	80,000	148,100	3,520,000	794.28	79.4
	Goat	8,990	80,000	219,800	6,680,000	1,975.96	85.92
	Pig	698	343,300	3,175,000	44,000,000	2,215.84	90.51
A/B comp.	Chicken	578	95,050	1,596,000	10,000,000	922.348	92.21
	Goat	616	426,000	3,412,000	21,000,000	2,101.87	91.4