Transcriptome and chromatin structure annotation of liver, CD4+ and CD8+ T cells from four livestock species

Supplementary file 1: Supplementary figures and tables

List of Figures

S1 RNA-seq processing pipeline overview. RNA-seq reads were processed with STAR for mapping and Cufflinks for transcript modeling using the reference gene annotation as input and for each sample individually. Modelled transcripts were then merged with Cuffmerge to produce a single gene annotation per species, and the transcripts from this novel gene set were further processed with FEELnc to produce a reliable set of IncRNAs. Reference and novel transcripts and gene expressions were quantified in each sample using the STAR/RSEM pipeline. Differential expression analysis was performed on reference and novel genes with $T P M \geq 0.1$ in at least 2 samples using the R/Bioconductor package edgeR.
S2 RNA-seq mapped read classification into genomic domains. For each sample, RNA-seq mapped reads were classified into exonic (1_exon), intronic (2_intr), intergenic (3ig) and other (4 other) reads.
S3 RNA-seq sample PCA based on the expression of reference genes. Only reference genes with a TPM ≥ 0.1 in at least 2 samples were used.
S4 Gene expression ratio in males versus females on chromosomes X or Z. Gene expression was compared in males vs. females using the base 10 logarithm of the TPM values. y-axis: the $\log _{2}$ of the male/female expression ratio for the genes located on the chromosome of interest. For each plot, the median of these expression ratios is indicated in the title. Left: genes located on chromosome 1 used as a control. Right: genes located on chromosome X for mammals and Z for chicken. x-axis: the position of the gene on the chromosome of interest. 8
S5 Biological Process GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).
S6 Molecular Function GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).
S7 Cellular Compartment GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).
S8 GO term enrichment analysis for reference genes differentially expressed between liver and T cells in all species. This analysis was performed for each GO (in column: Biological Process, Molecular Function, Cellular Compartment in that order) and for genes overexpressed in liver (top) and over-expressed in T cells (bottom).
S9 Distribution of FR-AgENCODE transcripts into four positional (known, extension, alternative, novel) and three coding (mRNA, IncRNA, otherRNA) classes. (A) Distribution of all FR-AgENCODE transcripts into positional and coding classes; (B) and (C) Distribution of FR-AgENCODE transcripts of each coding class into positional classes, and of each positional class into coding classes respectively.
S10 Novel coding FR-AgENCODE genes enrich the set of blood and T cell annotated genes. (A) Venn diagrams of novel coding genes for each triplet of livestock species (two livestock genes are defined as orthologous if they project to the same human gene). (B) Gene set enrichment analysis on the human orthologs of the 93 cattle, 52 goat, 74 chicken and 26 pig genes, using EnrichR (Kuleshov et al. 2016; http://amp.pharm.mssm.edu/Enrichr/) on the ARCS4 Tissue dataset (https://amp.pharm.mssm.edu/archs4/). (C) Gene names of the 12 genes that are common to two livestock species. Out of these 12, 8 are coding for T cell Receptor Alpha or Beta Variable genes.

S12 LncRNA gene features. Genomic structure features (left) and expression (right) are indicated for protein coding genes (coding) and IncRNA genes (lnc). The expression (TPM) is given for the three tissues and the four species; IncRNA genes are between 8- and 43-fold less expressed than protein coding genes (expression median: 0.4 vs .10 TPM respectively).

S13 Syntenic IncRNAs conserved between the 4 livestock species and human. The 6 syntenic IncRNAs conserved in the 4 livestock species and human are represented in green and their surrounding protein coding genes in orange. Distances between the genes are indicated either in base pair or in kilo base pair (k). A distance of 0 means the genes are overlapping. A distance in red means a lower confidence in the orthology relationship for this species, after inspection of the distances found in the other species. When the IncRNA was not known before, a new gene name is proposed (asterisk).
S14 ATAC-seq read pair summary statistics. For each species and sample (labelled by its tissue and animal number), the number of initial read pairs (1_init), of read pairs obtained after trimming (2_trim), mapping (3_map), proper pairing (4_pair), q10 filtering (5_q10), mitochondrial read removal (6_nonmt), and PCR duplicate read removal (7_nondup) are shown.
S15 ATAC-seq peak size distribution. For each species, the size distribution of tissue and merged (i.e. across all tissues) ATAC-seq peaks are provided.
S16 Density of ATAC-seq peaks around starts of novel (i.e. not known) transcripts for cattle (A), goat (B), chicken (C) and pig (D).

S17 ATAC-seq peak distribution into genomic domains. For each species, are provided: the percentage of ATAC-seq peaks that are exonic, intronic, overlapping the TSS of a reference gene extended by 0,1 or 5 Kb on each side, overlapping the TTS of a reference gene extended by 0,1 or 5 Kb on each side and intergenic.
S18 Per sample promoter accessibility for four reference gene expression quartiles in pig.
S19 Schematic illustration of the per-gene and cross-sample RNA-seq versus ATAC-seq correlation analysis.
S20 Correlation between reference gene expression and chromatin accessibility at the TSS for goat. For each pair of reference gene and ATAC-seq peak overlapping the reference gene TSS extended by 1 Kb on each side, the Pearson correlation was computed between the base 10 logarithm of the gene TMM and the base 10 logarithm of the normalized ATAC-seq signal at the peak. The distribution was then plotted for non DE genes (A, top) and for DE genes (B, bottom).
S21 ATAC-seq sample heatmap and hierarchical clustering based on the 1083 level 4 ATACseq peaks. Pairwise similarity between samples is computed as the Pearson correlation between the base 10 logarithm of the normalized reads of the 1083 ATAC-seq peaks common to 4 species. These similarities are plotted as a heatmap, where samples appear both as rows and columns and are labelled by their species, tissue and the sex of the animal. The color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample pair (the lighter, the higher). Hierarchical clustering is performed using one minus the squared Pearson correlation as a distance and the complete linkage aggregation method.
S22 Relation between non promoter proximal chromatin accessibility conservation and differential accessibility. This figure is the same as main Figure 6 but is done restricting to ATAC-seq peaks not overlapping the TSS+-1kb in any of the species where it is present. Phastcons scores of these ATAC-seq peaks were plotted after dividing the human hits according to both their similarity level (between 1 and 3, x-axis, level 4 removed because there were less than 50 peaks in a category) and their differential accessibility (DA) status (DA in at least one species or DA in none of the 4 species, boxplot color). Although the phastcons score obviously increases with the similarity level, it is clear that, for a given similarity level, the phastcons score is higher for DA human hits than for non DA human hits (all similarity levels, p-values $<1.2 \times 10^{-06}$ overall, Wilcoxon tests) (number of elements the boxplots from left to right: 151,783, 19,732, 11,922, 3,317, 2,100, 1,082).
S23 Hi-C read summary statistics. For each species and animal, are plotted the number of: initial read pairs after sequencing (1_initial), pairs with both reads mapped on the genome (2_reported), pairs in a valid configuration, that is when the sum of the distances from the reads to their next Hindlll restriction sites downstream is comprised between 20bp and 1 Kb (3_valid), pairs after removing PCR duplicates (4_valid_rmdup) and the number of read pairs supporting proximity between two different chromosomes (5_trans).

S24 Method for predicting Hi-C A and B compartments. Illustration of the A/B compartment calling workflow using the interaction matrices of the first chromosome in pig. Upper panels: interaction matrices at different steps of the workflow. Lower panel: the first three eigenvectors are shown along the chromosome to illustrate the relevance of PC\#1 as the discriminative value to segregate bins between A and B compartments.
S25 CTCF motif density and local interaction score (left) and Directionality Index (DI, right) within and around Hi-C Armatus and Armatus/Juicer TADs.
S26 Distribution of Hi-C A and B compartments along each chromosome and for each animal. Genome-wide overview of compartment labels per 500 Kb bin in pig for each animal. A general coherence can be observed across replicates. White regions are devoid of any called compartment.

List of Tables

S1 Completed experiments. Available data per animal, sample and experimental assay. Green: completed experiment. Red (NA): not available. Hi-C was attempted on liver samples only, and succeeded on all species but cattle. Consequently, ATAC-seq was not attempted on the cattle liver samples either.
S2 Genome and reference gene annotation used for each species. 33
S3 Software used in the FR-AgENCODE project. 34
S4 RNA-seq read mapping statistics. Number and proportion of mapped and uniquely mapped RNA-seq read pairs for each species, replicate and tissue.
S5 Differentially Expressed (DE) reference genes. Number of differentially expressed reference genes obtained by the two statistical models (see main text and Methods)
S6 Genes consistently over-expressed in CD4+ compared to CD8+ or reciprocally, in four livestock species. For the 39 genes consistently seen as over-expressed in CD4+ with respect to CD8+ (10 genes) or reciprocally (29 genes), are indicated: the human gene ID, the gene name in a column that indicates the cell type in which the gene is over-expressed, the TPM in human CD4+ and CD8+ cells from the Blueprint project (CD4-positive, alpha-beta T cell and CD8-positive, alpha-beta T cell respectively), whether or not these expression levels are consistent with the differential behavior observed in livestock, the expression in livestock CD4+ and CD8+ (average across samples) and a reference describing the role of the gene in blood cells when available.
S7 FR-AgENCODE transcript positional classification.
S8 FR-AgENCODE novel coding genes and their orthology with human 40
S9 Differentially Expressed (DE) FR-AgENCODE genes. Number of differentially expressedFR-AgENCODE genes obtained by the two statistical models (see main text and Methods).41

S10 IncRNA classification. Number of classified expressed IncRNAs per species. This table includes monoexonic IncRNAs that represent 57-68\% of these transcripts. Loci are bracketed. Fields with an asterisk (*) indicate the existence of IncRNAs unclassified by FEELnc because they are on unassembled contigs; they represent 217, 717, 2,718 and 83 IncRNAs in cattle, goat, chicken and pig respectively and are not listed here.
S11 FR-AgENCODE transcript coding classification.
S12 Number of ATAC-seq peaks per species.44
S13 Number of differentially accessible (DA) ATAC-seq peaks per species. 45

S14 Hi-C read pair mapping statistics. Number of read pairs of different categories. Initial: total number of sequenced read pairs. Reported: pairs with both reads mapped on the genome. Valid: uniquely mapped pairs with an estimated insert size (sum of the distances from the reads to their next downstream Hindlll genomic sites) between 20bp and 1Kb. Valid.rmdup: valid read pairs after duplication removal that were used to build the interaction matrices. Trans: pairs with reads on different chromosomes.
S15 Statistics of Hi-C TADs and A/B compartments. 47

Figure S1: RNA-seq processing pipeline overview. RNA-seq reads were processed with STAR for mapping and Cufflinks for transcript modeling using the reference gene annotation as input and for each sample individually. Modelled transcripts were then merged with Cuffmerge to produce a single gene annotation per species, and the transcripts from this novel gene set were further processed with FEELnc to produce a reliable set of IncRNAs. Reference and novel transcripts and gene expressions were quantified in each sample using the STAR/RSEM pipeline. Differential expression analysis was performed on reference and novel genes with $T P M \geq 0.1$ in at least 2 samples using the R/Bioconductor package edgeR.

Figure S2: RNA-seq mapped read classification into genomic domains. For each sample, RNA-seq mapped reads were classified into exonic (1 exon), intronic (2 intr), intergenic (3 ig) and other (4_other) reads.

Projection on the first two PCs

A
Projection on the first two PCs

C

Projection on the first two PCs

B
Projection on the first two PCs

D

Figure S3: RNA-seq sample PCA based on the expression of reference genes. Only reference genes with a TPM ≥ 0.1 in at least 2 samples were used.

Figure S4: Gene expression ratio in males versus females on chromosomes \mathbf{X} or \mathbf{Z}. Gene expression was compared in males vs. females using the base 10 logarithm of the TPM values. y-axis: the $\log _{2}$ of the male/female expression ratio for the genes located on the chromosome of interest. For each plot, the median of these expression ratios is indicated in the title. Left: genes located on chromosome 1 used as a control. Right: genes located on chromosome X for mammals and Z for chicken. x-axis: the position of the gene on the chromosome of interest.
 Figure S5: Biological Process GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S6: Molecular Function GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns:
cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

Figure S7: Cellular Compartment GO term enrichment analysis for reference genes differentially expressed between liver and T cells. This analysis was performed for each species individually (in columns: cattle, goat, chicken, pig in that order) and for genes over-expressed in liver (top) and over-expressed in T cells (bottom).

[^0]

B

C

Figure S9: Distribution of FR-AgENCODE transcripts into four positional (known, extension, alternative, novel) and three coding (mRNA, IncRNA, otherRNA) classes. (A) Distribution of all FR-AgENCODE transcripts into positional and coding classes; (B) and (C) Distribution of FRAgENCODE transcripts of each coding class into positional classes, and of each positional class into coding classes respectively.
 (A) Venn diagrams of novel coding genes for each triplet of livestock species (two livestock genes are defined as orthologous if they project to the same human gene). (B) Gene set enrichment analysis on the human orthologs of the 93 cattle, 52 goat, 74 chicken and 26 pig genes, using EnrichR (Kuleshov et al. 2016; http:
//amp.pharm.mssm.edu/Enrichr/) on the ARCS4 Tissue dataset (https://amp.pharm.mssm.edu/archs4/). (C) Gene names of the 12 genes that are common to two livestock species. Out of these 12, 8 are coding for T cell Receptor Alpha or Beta Variable genes.

A
Projection on the first two PCs

C

Projection on the first two PCs

B

Projection on the first two PCs

D

Figure S11: RNA-seq sample PCA based on FR-AgENCODE gene expression.

genes (expression median: 0.4 vs . 10 TPM respectively).

Figure S13: Syntenic IncRNAs conserved between the 4 livestock species and human. The 6 syntenic IncRNAs conserved in the 4 livestock species and human are represented in green and their surrounding protein coding genes in orange. Distances between the genes are indicated either in base pair or in kilo base pair (k). A distance of 0 means the genes are overlapping. A distance in red means a lower confidence in
the orthology relationship for this species, after inspection of the distances found in the other species. When the IncRNA was not known before, a new gene name is proposed (asterisk).

Figure S14: ATAC-seq read pair summary statistics. For each species and sample (labelled by its tissue and animal number), the number of initial read pairs (1 init), of read pairs obtained after trimming (2 trim), mapping (3_map), proper pairing (4_pair), q10 filtering (5_q10), mitochondrial read removal (6_nonmt), and PCR duplicate read removal (7_nondup) are shown.

Figure S15: ATAC-seq peak size distribution. For each species, the size distribution of tissue and merged (i.e. across all tissues) ATAC-seq peaks are provided.

Figure S16: Density of ATAC-seq peaks around starts of novel (i.e. not known) transcripts for cattle (A), goat (B), chicken (C) and pig (D)

Reference genomic domain
Figure S17: ATAC-seq peak distribution into genomic domains. For each species, are provided: the percentage of ATAC-seq peaks that are exonic, intronic, overlapping the TSS of a reference gene extended by 0,1 or 5 Kb on each side, overlapping the TTS of a reference gene extended by 0 , 1 or 5 Kb on each side and intergenic.

Figure S18: Per sample promoter accessibility for four reference gene expression quartiles in pig.

B
Figure S20: Correlation between reference gene expression and chromatin accessibility at the TSS for goat. For each pair of reference gene and ATAC-seq peak overlapping the reference gene TSS extended by 1 Kb on each side, the Pearson correlation was computed between the base 10 logarithm of the gene TMM and the base 10 logarithm of the normalized ATAC-seq signal at the peak. The distribution was then plotted for non DE genes (A, top) and for DE genes (B, bottom).

Figure S21: ATAC-seq sample heatmap and hierarchical clustering based on the 1083 level 4 ATAC-seq peaks. Pairwise similarity between samples is computed as the Pearson correlation between the base 10 logarithm of the normalized reads of the 1083 ATAC-seq peaks common to 4 species. These similarities are plotted as a heatmap, where samples appear both as rows and columns and are labelled by their species, tissue and the sex of the animal. The color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample pair (the lighter, the higher). Hierarchical clustering is performed using one minus the squared Pearson correlation as a distance and the complete linkage aggregation method.

status
白 non differential
differential

ATAC-seq human hit orthology level
Figure S22: Relation between non promoter proximal chromatin accessibility conservation and differential accessibility. This figure is the same as main Figure 6 but is done restricting to ATAC-seq peaks not overlapping the TSS+-1kb in any of the species where it is present. Phastcons scores of these ATAC-seq peaks were plotted after dividing the human hits according to both their similarity level (between 1 and 3 , x-axis, level 4 removed because there were less than 50 peaks in a category) and their differential accessibility (DA) status (DA in at least one species or DA in none of the 4 species, boxplot color). Although the phastcons score obviously increases with the similarity level, it is clear that, for a given similarity level, the phastcons score is higher for DA human hits than for non DA human hits (all similarity levels, p-values $<1.2 \times 10^{-06}$ overall, Wilcoxon tests) (number of elements the boxplots from left to right: $151,783,19,732,11,922,3,317$, 2,100, 1,082).

Figure S23: Hi-C read summary statistics. For each species and animal, are plotted the number of: initial read pairs after sequencing (1_initial), pairs with both reads mapped on the genome (2reported), pairs in a valid configuration, that is when the sum of the distances from the reads to their next HindIII restriction sites downstream is comprised between 20bp and 1 Kb (3_valid), pairs after removing PCR duplicates (4_valid_rmdup) and the number of read pairs supporting proximity between two different chromosomes (5_trans).

1. Merge the biological replicates by adding their read counts for each pair of bins

The Hi-C contact matrices from the 4 replicates (Sus scrofa, chromosome 1)
2. Normalization: matrix balancing and observed/expected (based on distance) (per chromosome)
3. Pearson correlation matrix from each pair of bins

Raw matrix, normalized matrix and correlation matrix (Sus scrofa, chromosome 1)
3. Principal Component Analysis on the bins

=> The sign of the $1^{\text {st }}$ eigenvector (PC\#1) defines the transitions between compartments.

Figure S24: Method for predicting Hi-C A and B compartments. Illustration of the A / B compartment calling workflow using the interaction matrices of the first chromosome in pig. Upper panels: interaction matrices at different steps of the workflow. Lower panel: the first three eigenvectors are shown along the chromosome to illustrate the relevance of PC\#1 as the discriminative value to segregate bins between A and B compartments.

Chicken

C

Figure S25: CTCF motif density and local interaction score (left) and Directionality Index (DI, right) within and around Hi-C Armatus and Armatus/Juicer TADs.

Figure S26: Distribution of Hi-C A and B compartments along each chromosome and for each animal. Genome-wide overview of compartment labels per 500 Kb bin in pig for each animal. A general coherence can be observed across replicates. White regions are devoid of any called compartment.

Table S1: Completed experiments. Available data per animal, sample and experimental assay. Green: completed experiment. Red (NA): not available. Hi-C was attempted on liver samples only, and succeeded on all species but cattle. Consequently, ATAC-seq was not attempted on the cattle liver samples either.

RNA-seq

Cattle	cattle1	cattle2	cattle3	cattle4	Goat	goat1	goat2	goat3	goat4
cd4									
cd8	NA								
liver									
Chicken	chicken1	chicken2	chicken3	chicken4	lig				
cd4	NA	NA				pig1	pig2	pig3	pig4
cd8	NA	NA	NA		NA				
liver									

ATAC-seq

Cattle	cattlel	cattle2	cattle3	cattle4	Goat	goat 1	goat2	goat3	goat4
cd 4					cd4		NA		
cd8					cd8				
iver	NA	NA	NA	NA	liver				
Chicken	chickenl	chicken2	chicken3	chicken4	Pig	pig1	pig2	pig3	pig4
cd4				NA	cd4				
cd8	NA		NA	NA	cd8				
liver					iver				NA

Hi-C

Cattle	cattle1	cattle2	cattle3	cattle4	Goat	goat1	goat2	goat3	goat4
iver	NA	NA	NA	NA	liver				
Chicken	chicken1	chicken2	chicken3	chicken4	Pig	pig1	pig2	pig3	pig4
iver					iver				

Table S2: Genome and reference gene annotation used for each species.

Species	Reference genome assembly				Reference gene annotation		
	Version	\# fasta sequences	Size (in Gb)	ContigN50 (in Mb)	Source	\# genes	\# transcripts
	UMD3.1	3,317	2.67	0.1	Ensembl v90	24,616	26,740
Goat	CHIR_ARS1	29,907	2.92	26.2	NCBI vCHIR_ARS1	28,931	53,266
Chicken	GalGal5	23,475	1.23	2.9	Ensembl v90	24,881	38,118
Pig	Sscrofa11.1	613	2.5	48.2	Ensembl v90	25,880	49,448

Table S3: Software used in the FR-AgENCODE project.

Software name	Software version	Software URL
R	3.3 .3	https://www.r-project.org/about.html
python	2.7 .2	https://www.python.org/
samtools	1.3 .1	http://www.htslib.org/
bedtools	2.26 .0	http://bedtools.readthedocs.io/en/latest/
kentUtils	302.1 .0	https://github.com/ENC0DE-DCC/kentUtils
bwtool	Nov 2015 version	https://github.com/CRG-Barcelona/bwtool/wiki
emboss	6.4 .0 .0	http://emboss.sourceforge.net/
fastqc	0.11 .2	https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
cutadapt	1.8 .3	http://cutadapt.readthedocs.io/en/stable/guide.html
trim galore	0.4 .0	https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
picardtools	2.1 .1	https://broadinstitute.github.io/picard/
STAR	$2.5 .1 b$	https://github.com/alexdobin/STAR
cufflinks	2.2 .1	http://cole-trapnell-lab.github.io/cufflinks/
RSEM	1.3 .0	http://deweylab.biostat.wisc.edu/rsem/README.html
FEELnc	0.1 .0	https://github.com/tderrien/FEELnc
Bowtie2	2.3 .3 .1	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Macs2	2.1 .1 .20160309	https://chipster.csc.fi/manual/macs2.html
fimo	4.11 .1	http://meme-suite.org/doc/fimo.html
HiC-Pro	2.9 .0	http://nservant.github.io/HiC-Pro/
Armatus	2,1	https://www.cs.cmu.edu/~ckingsf/software/armatus/
HiTC	1.18 .1	https://bioconductor.org/packages/release/bioc/html/HiTC.html
Juicer tools	1.5 .3	https://github.com/theaidenlab/juicer/wiki/Juicer-Tools-Quick-Start
Last	956	http://last.cbrc.jp/

Table S4: RNA-seq read mapping statistics. Number and proportion of mapped and uniquely mapped RNA-seq read pairs for each species, replicate and tissue.

Species	Tissue	Animal	\# read pairs	\# read pairs mapped	\% read pairs mapped	\# uniquely mapped read pairs	\% uniquely mapped read pairs (out of mapped)	\% uniquely mapped read pairs (out of total)
Cattle	cd4	cattle1	115398649	111206516	96,4	108830546	97,9	94,3
	cd4	cattle2	118918186	114474132	96,3	112127763	98,0	94,3
	cd4	cattle3	121389996	113765363	93,7	108717357	95,6	89,6
	cd4	cattle4	116083510	112298028	96,7	110019926	98,0	94,8
	cd8	cattle2	117869348	113617513	96,4	111375385	98,0	94,5
	cd8	cattle3	118910270	114458706	96,3	111966825	97,8	94,2
	cd8	cattle4	121883485	117905219	96,7	115423917	97,9	94,7
	liver	cattle1	115371212	111956767	97,0	110499020	98,7	95,8
	liver	cattle2	119870689	116728118	97,4	115092798	98,6	96,0
	liver	cattle3	136710805	132763513	97,1	130973598	98,7	95,8
	liver	cattle4	118889544	115841946	97,4	114125584	98,5	96,0
Goat	cd4	goat1	133365348	130269121	97,7	123559681	94,8	92,6
	cd4	goat2	132983117	128521637	96,6	121198446	94,3	91,1
	cd4	goat3	133831464	129566423	96,8	122990885	94,9	91,9
	cd4	goat4	130150700	126874881	97,5	121461169	95,7	93,3
	cd8	goat1	130970787	127546631	97,4	120904297	94,8	92,3
	cd8	goat2	131654878	128355710	97,5	121468794	94,6	92,3
	cd8	goat3	132923610	129276688	97,3	123235599	95,3	92,7
	cd8	goat4	131413248	127239980	96,8	121762207	95,7	92,7
	liver	goat1	112623152	110432315	98,1	105943818	95,9	94,1
	liver	goat2	120492856	117992580	97,9	112453956	95,3	93,3
	liver	goat3	133931176	131150414	97,9	126458023	96,4	94,4
	liver	goat4	125330385	122259872	97,6	118111570	96,6	94,2
Chicken	cd4	chicken3	91907306	86645024	94,3	83374510	96,2	90,7
	cd4	chicken4	90843387	79772579	87,8	76778803	96,2	84,5
	cd8	chicken4	90476514	82431332	91,1	79685312	96,7	88,1
	liver	chicken1	119681527	114944560	96,0	111122525	96,7	92,8
	liver	chicken2	107777068	103770521	96,3	100787680	97,1	93,5
	liver	chicken3	121616481	116940968	96,2	113315177	96,9	93,2
	liver	chicken4	124089440	119195187	96,1	115442821	96,9	93,0
Pig	cd4	pig2	116273646	113997546	98,0	109051735	95,7	93,8
	cd4	pig3	118260498	115042891	97,3	110755493	96,3	93,7
	cd4	pig4	114159672	111934574	98,1	108379228	96,8	94,9
	cd8	pig1	231339734	225402022	97,4	219199568	97,2	94,8
	cd8	pig2	116383341	114513826	98,4	110146147	96,2	94,6
	cd8	pig3	116696412	113825826	97,5	110613640	97,2	94,8
	cd8	pig4	117449531	114751230	97,7	108598741	94,6	92,5
	liver	pig1	116242745	113660238	97,8	110849470	97,5	95,4
	liver	pig2	117818284	115364464	97,9	111627222	96,8	94,7
	liver	pig3	110567402	108214816	97,9	105590955	97,6	95,5
	liver	pig4	114769769	112137997	97,7	109296648	97,5	95,2

Table S5: Differentially Expressed (DE) reference genes. Number of differentially expressed reference genes obtained by the two statistical models (see main text and Methods)

Differential analysis model	Tissue 1	Tissue 2	$\begin{gathered} \hline \log (\text { Tissue } 2 / \\ \text { Tissuel) } \end{gathered}$	Number of DE reference genes			
				Cattle	Goat	Chicken	Pig
1 (tissue pairs)	cd4	cd8	>0	751	1098	1504	867
	cd4	cd8	<0	463	748	592	604
	cd4	liver	>0	5048	6303	5112	5725
	cd4	liver	<0	3887	4304	3351	3653
	cd8	liver	$\times 0$	4890	6134	4146	5665
	cd8	liver	<0	3911	4397	3087	3792
2 (tcell vs liver)	cd	liver	>0	4992	6188	4307	5666
	cd	liver	<0	3943	4384	2640	3772

Table S6: Genes consistently over-expressed in CD4+ compared to CD8+ or reciprocally, in four livestock species. For the 39 genes consistently seen as over-expressed in CD4+ with respect to CD8+ (10 genes) or reciprocally (29 genes), are indicated: the human gene ID, the gene name in a column that indicates the cell type in which the gene is overexpressed, the TPM in human CD4+ and CD8+ cells from the Blueprint project (CD4-positive, alpha-beta T cell and CD8-positive, alpha-beta T cell respectively), whether or not these expression levels are consistent with the differential behavior observed in livestock, the expression in livestock CD4+ and CD8+ (average across samples) and a reference describing the role of the gene in blood cells when available.

Hemmentid	Gense marne (in colamen correxponding to averexprexalon)		TPM in buma		Comatitumey betwern likrextock and buman (FC>1)	TPM in catto		TPM in toxt		TMM in chackem		TPM in pob	
	CD4.	cns-	cD.	cns-		CD4.	chs.	CD4.	cns.	cD.	cns.	CD.	cns.
Ensc000000102245 [1]	CD40LG	.	270	0.5	ym	97.9	76	51.6	105	164.8	75	153.4	28.7
EN3000000106537	TSPMN 13	.	0.4	0.5	m	118.5	62.6	93.9	32.6	4.0	0.5	3.4	1.0
Ensc0000001074:5s [2]	gatas	.	60	4.0	yox	37.7	11.5	433	15.5	1135	76	51.1	300
EN3600000113602	IL.1ML1	.	NA	Q. 1	NA	4.7	0.3	52	2.2	53	0.2	4.2	1.0
Ensc000000126333 [3]	CCKT	.	3120	1020	mox	33.7	11.3	164.5	44.6	96.2	21.7	\$7.1	332
EN3600000130396	ArDs	.	0.9	0.3	ym	6.6	2.9	178	2.5	3.3	0.5	2.4	0.1
2nsc000000163599 [4]	CtLa	.	390	20	ma	6.1	06	19.5	14	6336	16.9	150	2.2
2N300000017s199	zc3H12d	.	170	6.0	max	30.5	13.6	457	9.4	1,384.7	134.7	263	4.5
2Nsccoocoulis 362 [s]	CD2s	.	161.0	740	yox	344	9.3	91.5	11.0	2083	14.8	1074	27.6
2nscroob00178573 [6]	mar	-	30	1.0	yox	13.2	1.5	11.5	5.4	6.5	03	150	2.5
2N3c000000139367	\bigcirc	Ncwil 1	NA	NA	NA	5.9	450	so	159	32	10.1	00	02
2Nscroob001699352 [7]	.	ADMEI	06	20	yox	3.9	17.9	0.6	73	57.5	2193	2.7	15.2
ENSc00000136966	.	mycaty	a. 1	0.2	yox	1.7	72	0.2	0.7	00	28	00	14
N3xc00000136573	.	bLE	1.0	4.0	ma	15.9	270	3.5	5312	1.9	15.4	1.5	32.8
2N3c00000182985	.	Canme	a,	NA	NA	4.1	21.4	1.1	3.5	1.6	3.9	00	0.2
2nscoocou0271503 [8]	.	CCLS	so	380	yox	33.0	1,205. s	162	2,009.6	1.2	102.1	1902	2,463.9
2Nscr000000172116 [9]	.	chsm	20	2100	yox	9.7	2607	17.6	514.5	0,	1730	1.1	115.4
	.	CKrma	30	340	max	23	16.3	4.0	16.2	0, 5	520	3.1	37.6
2N3c00000100592	.	namal	4.0	3.0	mo	53	so	2.1	2.5	03	a3	5.5	5.7
ENscrococou39664 [11]	.	napke	a 3	0.9	ma	1.5	8.2	0.9	10.1	30	11.7	14.9	60.1
2N3c000002113833	.	mapz	06	0.4	\pm	a. 1	0.7	1.9	6.9	a. 1	as	0.1	09
2Nsc00000016350s [12]	.	EOMES	0.9	1.0	yox	1.0	11.3	1.0	175	2.9	133.4	1.0	12.5
2N3000000139132	.	FGD4	0.2	20	yox	3.3	5.5	as	23	0.9	6.5	0.2	53
2Nsc000000160219	.	GAB3	4.0	4.0	mo	3.3	56	9.2	23.1	4.4	38.4	59	27.2
EN36000001123245	.	Gpip1s	170	260	ym	78	22.8	9.0	27.8	13.5	104.8	390	2976
ENsc000001003s5 [13]	.	IL.2K8	70	9.0	ma	42.7	1316	134.9	573.8	302	1907	62.6	2082
ENSc000000157404	.	krr	09	20	ma	2.4	7.9	24	6.4	a. 1	03	00	1.2
2Nscou000036730 [14]	.	LAT2	0.5	4.0	ma	46.1	1363	200	462	20	11.9	22.1	123.7
EN3600000159067	.	Itray	650	550	mo	24.0	98.1	260	52.3	12.3	41.5	4.6	21.4
2N3c00000013s186	.	mass	0.1	NA	NA	0.9	5.9	2.1	6.4	16.4	32.9	00	00
EN3600000100311	.	pmara	0.9	NA	NA	6.1	23.5	2.2	56	0.2	09	0.7	5.6
ENsc000000113936	-	PLEE	20	22.0	ym	10.4	32.1	9.1	32.4	36.5	430	53	38.9
EN3600000141936	.	pknmels	so	20	mo	1.5	1.5	3.4	30	76	3.3	3.4	3.4
2xccoocoul9 9915	-	Muscer 1 A	a. 1	0.1	mo	3.3	5.3	2.5	10.5	276	61.5	0.3	30
N35000000119729	.	кHOO	60	4.0	\pm	18.1	74.3	14.5	45.9	0.6	8.9	2.9	16.5
2N3c0000013615s [15]	.	SPMr	NA	1.0	ma	1.0	23.5	06	11.3	20	66.0	0.1	40.5
2N3000000204634	.	TBCIDS	0.6	20	ma	12.6	62.9	5.5	170	03	0.6	0.2	as
2N3000000070739	.	TEGK2	6.0	60	mo	4.5	152	6.9	29.1	3.3	9.5	3.6	39.0
ENsc00000169914	.	ттет	0.4	as	yox	0.4	20	0.2	0.7	1.0	2.5	0.1	0.6

[^1]

Table S7: FR-AgENCODE transcript positional classification.

Species	Total \#	known		extersion		afternative		novel	
		\#	\% of total	\#	\% ot total	\#	90 at total	\#	\%o ot total
Catte	84,971	11,736	13.8	2,500	2.9	40,813	48.0	29,922	35.2
Gout	78,091	29,520	37.8	2,583	3.3	28,891	37.0	17,097	21.9
Cricken	57,817	15,890	27.5	3,018	5.2	28,005	48.5	10,838	18.7
Pig	77,540	23,921	30.8	2,702	3.5	35,002	45.2	15,855	20.4
Species	knownmRNA		knownincRNA		known.otherRNA				
	\#	\% of known	\#	\% of known	\#	\% of known			
Catte	11,576	98.6	13	0.1	147	1.3			
Goat	26,973	91.4	1,103	3.9	1,384	4.7			
Cricken	14,705	92.9	882	5.5	249	1.6			
Pig	23,701	99.1	96	0.4	124	0.5			
Species	extersionmRNA		extersionincRNA		edersion.other RNA				
	\#	9% of extersion	\#	\% of extersion	\#	9% of extersion			
Catte	2,497	99.9	0	0.0	3	0.1			
Goat	2,351	91.0	100	3.9	132	5.1			
Cricken	2,982	98.8	33	1.1	3	0.1			
Pig	2,094	99.7	5	0.2	3	0.1			
Species	alernativernina		aternutivelincRNA		aliernative.otherRNA				
	\#	\% of alternative	\#	90 of alfernative	\#	90 of alternative			
Catte	40,770	99.9	0	0.0	43	0.1			
Goat	26,554	91.9	984	3.4	1,353	4.7			
Cricken	27,470	97.9	399	1.4	196	0.7			
Pig	34,822	99.3	226	0.6	14	0.0			
Species	novel.mRNA		novelincRNA		novel.atherRNA				
	\#	\% of novel	\#	\% of novel	\#	\% of novel			
Catte	4,958	16.6	22,711	75.9	2,253	7.5			
Goat	2,949	17.2	11,017	67.9	2,531	14.8			
Cricken	2,350	21.7	6,797	62.7	1,091	15.6			
Pig	2,504	15.8	12,284	77.5	1,067	6.7			

Table S8: FR-AgENCODE novel coding genes and their orthology with human

Species	\# FR- AgENCODE genes	\# novel FRAgENCODE genes	\# novel coding FR- AgENCODE genes	that can be projected to a human gene	
				\#	\%
Cattle	34,296	19,324	15,611	166	12.3
Goat	28,537	11,545	16,437	85	6.4
Chicken	20,408	6,597	13,149	78	15.5
Pig	24,570	10,238	14,054	38	9.5

Table S9: Differentially Expressed (DE) FR-AgENCODE genes. Number of differentially expressed FR-AgENCODE genes obtained by the two statistical models (see main text and Methods).

Differential analy sis model	Tissue 1	Tissue 2	$\begin{gathered} \hline \log (\text { Tissue } 2 / \\ \text { Tissuel }) \end{gathered}$	Number of DE FR-AgENCODE genes			
				Cattle	Goat	Chicken	Pig
1 (tissue pairs)	cd4	cd8	>0	1450	1614	1940	1211
	cd4	cd8	<0	923	1056	974	792
	cd4	liver	>0	12231	11782	7426	9709
	cd4	liver	<0	10311	7152	5134	6386
	cd8	liver	>0	11810	11542	5899	9880
	cd8	liver	<0	10573	7408	4331	6782
2 (tcell vs liver)	cd	liver	>0	12218	11773	6246	10040
	cd	liver	<0	10818	7448	3929	6910

cludes monoex asterisk (*) i contigs; they are not listed	exonic Inc dicate th represen here.	NAs th existen 217, 717	represe of IncP $2,718$	57-68\% As unc 83 In	these ified NAs in	anscripts FEELnc ttle, goa	Loci are cause chicke	rackete y are nd pig	ields unass pectiv
			Intergen	RNAs	88-94\%		Geni	NAs (loci)	12\%
	Total (transcript)	Sam upstr.	rand downstr.	s1kb D	$>1 \mathrm{~kb}$	Convergent	Exonic antisense	Intronic antisense	Intronic sense
Cattle	22724	$\begin{gathered} 5522 \\ (4671) \end{gathered}$	$\begin{gathered} 6438 \\ (5460) \end{gathered}$	$\begin{gathered} 1450 \\ (1070) \end{gathered}$	$\begin{gathered} 4494 \\ (3588) \end{gathered}$	$\begin{gathered} 3328 \\ (2617) \end{gathered}$	$\begin{aligned} & 1235 \\ & (851) \end{aligned}$	$\begin{gathered} 241 \\ (173) \end{gathered}$	$\begin{gathered} \hline 16 \\ (16) \\ \hline \end{gathered}$
Goat	13864	$\begin{gathered} 2431 \\ (1940) \\ \hline \end{gathered}$	$\begin{gathered} 4050 \\ (3312) \end{gathered}$	$\begin{gathered} 1744 \\ (1241) \end{gathered}$	$\begin{gathered} 2908 \\ (2233) \\ \hline \end{gathered}$	$\begin{gathered} 1966 \\ (1496) \\ \hline \end{gathered}$	$\begin{gathered} 437 \\ (220) \end{gathered}$	$\begin{gathered} 219 \\ (124) \\ \hline \end{gathered}$	$\begin{aligned} & 109 \\ & (89) \\ & \hline \end{aligned}$
Chicken	7502*	$\begin{gathered} 1618 \\ (1390) \end{gathered}$	$\begin{gathered} 2045 \\ (1728) \end{gathered}$	$\begin{gathered} \hline 687 \\ (539) \\ \hline \end{gathered}$	$\begin{aligned} & 1194 \\ & (983) \\ & \hline \end{aligned}$	$\begin{aligned} & 1093 \\ & (903) \end{aligned}$	$\begin{gathered} 646 \\ (510) \end{gathered}$	$\begin{gathered} 157 \\ (124) \end{gathered}$	$\begin{gathered} 62 \\ (56) \\ \hline \end{gathered}$
Pig	12587*	$\begin{gathered} 2508 \\ (2100) \\ \hline \end{gathered}$	$\begin{gathered} 3539 \\ (3075) \end{gathered}$	$\begin{aligned} & 1117 \\ & (810) \end{aligned}$	$\begin{gathered} 2466 \\ (2060) \end{gathered}$	$\begin{gathered} 1746 \\ (1436) \end{gathered}$	$\begin{gathered} 935 \\ (669) \end{gathered}$	$\begin{gathered} 216 \\ (178) \end{gathered}$	$\begin{gathered} 60 \\ (58) \end{gathered}$

Table S11: FR-AgENCODE transcript coding classification.

Species	Total \#\#	mRNA		IncRNA		otherRNA		
		\#	\% of total	\#	\% ot total	\#	\% ot total	
Cattle	84,971	59,801	70.4	22,724	26.7	2,446	2.9	
Goat	78,091	58,827	75.3	13,864	17.8	5,400	6.9	
Chicken	57,817	47,567	82.3	8,111	14.0	2,139	3.7	
Pig	77,540	63,721	82.2	12,611	16.3	1,208	1.6	
Species	mRNA. known		mRNA.extension		mRNA.alternative		mRNA.novel	
	\#	\% of mRNA						
Cattle	11,576	19.4	2,497	4.2	40,770	68.2	4,958	8.3
Goat	26,973	45.9	2,351	4.0	26,554	45.1	2,949	5.0
Chicken	14,765	31.0	2,982	6.3	27,470	57.8	2,350	4.9
Pig	23,701	37.2	2,694	4.2	34,822	54.6	2,504	3.9
Species	IncRNA.known		IncRNA.extension		IncRNA.alternative		IncRNA.novel	
	\#	\% of IncRNA						
Cattle	13	0.1	0	0.0	0	0.0	22,711	99.9
Goat	1,163	8.4	100	0.7	984	7.1	11,617	83.8
Chicken	882	10.9	33	0.4	399	4.9	6,797	83.8
Pig	96	0.8	5	0.0	226	1.8	12,284	97.4
Species	otherRNA.known		otherRNA.extension		otherRNA. alternative		otherRNA.novel	
	\#	\% of otherRNA						
Cattle	147	6.0	3	0.1	43	1.8	2,253	92.1
Goat	1,384	25.6	132	2.4	1,353	25.1	2,531	46.9
Chicken	249	11.6	3	0.1	196	9.2	1,691	79.1
Pig	124	10.3	3	0.2	14	1.2	1,067	88.3

Table S12: Number of ATAC-seq peaks per species.

Species	Tissue	\# ATAC-seq peaks
Cattle	cd4	69,661
	cd8	75,295
	merged	104,985
Goat	cd4	39,526
	cd8	57,084
	Chicken	liver
	merged	14,137
	cd4	74,805
	cd8	38,594
	Pig	liver
	merged	49,962
	cd4	75,305
	cd8	119,894
	liver	80,745
	merged	111,457
		25,885
		149,333

Table S13: Number of differentially accessible (DA) ATAC-seq peaks per species.

Tissue 1	Tissue 2	\log (Tissue2/Tissue1)	Species	Number of DA ATAC-seq peaks
T cell	Liver	>0	Goat	2,780
		<0		2,042
		>0	Chicken	6,663
		<0		6,991
		>0	Pig	5,467
		<0		3,678

Table S14: Hi-C read pair mapping statistics. Number of read pairs of different categories. Initial: total number of sequenced read pairs. Reported: pairs with both reads mapped on the genome. Valid: uniquely mapped pairs with an estimated insert size (sum of the distances from the reads to their next downstream HindllI genomic sites) between 20bp and 1 Kb . Valid.rmdup: valid read pairs after duplication removal that were used to build the interaction matrices. Trans: pairs with reads on different chromosomes.

Species	Animal	initial	reported	valid	valid.rmdup	trans
Goat	goat1	$192,807,889$	$164,130,417$	$94,760,148$	$77,324,040$	$31,728,784$
	goat2	$184,098,994$	$142,479,273$	$46,280,100$	$36,346,806$	$12,858,516$
	goat3	$192,081,174$	$149,494,649$	$44,712,829$	$37,115,258$	$13,227,700$
	goat4	$178,929,203$	$135,758,984$	$38,435,525$	$31,232,835$	$12,691,582$
Chicken	chicken1	$172,356,821$	$136,854,885$	$100,067,668$	$74,551,182$	$35,227,545$
	chicken2	$182,654,001$	$152,646,931$	$122,151,951$	$86,044,085$	$30,151,392$
	chicken3	$193,520,830$	$149,648,213$	$89,183,496$	$64,824,211$	$19,603,078$
	chicken4	$187,696,586$	$131,460,531$	$51,115,059$	$37,069,637$	$11,768,987$
Pig	pig1	$168,050,522$	$139,712,050$	$111,642,484$	$82,782,023$	$25,956,367$
	pig2	$157,480,346$	$129,447,277$	$95,004,214$	$70,483,985$	$19,076,359$
	pig3	$165,285,596$	$132,403,825$	$93,115,687$	$74,144,797$	$23,560,745$
	pig4	$165,529,922$	$131,590,998$	$82,504,226$	$62,212,375$	$18,705,743$

Table S15: Statistics of Hi-C TADs and A/B compartments.	
Feature Species Number Min size Mean size Max size Genomic coverage (Mb) Genomic coverage (\%) TADs Pig 10,982 80,000 184,600 $4,520,000$ $2,027.28$ Chicken 5,362 80,000 148,100 $3,520,000$ 83.25 Goat 8,990 80,000 219,800 $6,680,000$ 794.28 79.4 A/B comp. Pig 698 343,300 $3,175,000$ $44,000,000$ $2,215.96$ 85.92 Chicken 578 95,050 $1,596,000$ $10,000,000$ 94 90.51 Goat 616 426,000 $3,412,000$ $21,000,000$ 222.348 92.101 .87	

[^0]: Figure S8: GO term enrichment analysis for reference genes differentially expressed between liver
 and T cells in all species. This analysis was performed for each GO (in column: Biological Process,
 Molecular Function, Cellular Compartment in that order) and for genes over-expressed in liver (top) and
 over-expressed in T cells (bottom).

[^1]:

