Figure S1. NFATc3 silencing reduces viability and proliferation of gastric cancer

cell line and the shNFATc3-resistant NFATc3 cDNA.

(a-d) NFATc3 silencing induced G1/S cell cycle arrest in MKN45 (a, b) and MKC803 (c, d). Cells were infected with lentivirus shC3-1 or shScr analyzed by flow cytometry after infection day1 to day5. The percentage of cell population at G1, S, and G2/M phases are represented as mean \pm S.D. of three independent experiments. (e) Target sequence for the NFATc3-shRNA (upper case) and mutated nucleotides (red) introduced in the target sequence without changing the amino acid sequence of NFATc3.

Figure S2. NFATc3 silencing upregulated DNA damage related genes in MGC803

and MKN45 cells.

(**a-b**) mRNA levels analyzed by q-RT-PCR of NFATc3 (a) and p21 (b) in shC3-1 or shScr infected MKN45 cells after infection day1 to day3. Statistical significance was assessed using two-tailed Student's t-test. *p < 0.05; ***p < 0.001. (c) MGC803 cells were infected with lentivirus shC3-1 or shScr analyzed after infection day1 to day3. Immunoblot of NFATc3 and p-CHK2/CHK2 and γ -H2AX expression in that infected cells. Fold changes relative to shScr are indicated.

Figure S3. Arsenic sulfide plays a role in inhibiting tumors through NFATc3.

(a) qPCR analysis of NFATc3 expression in arsenic sulfide treated AGS cells. Statistical significance was assessed using two-tailed Student's t-est. *p < 0.01; **p < 0.001. (b) qPCR analysis of NFATc3 expression in arsenic sulfide treated AGS cells. Statistical significance was assessed using two-tailed Student's t-test. *p < 0.01; **p < 0.001. (c, d) Arsenic sulfide

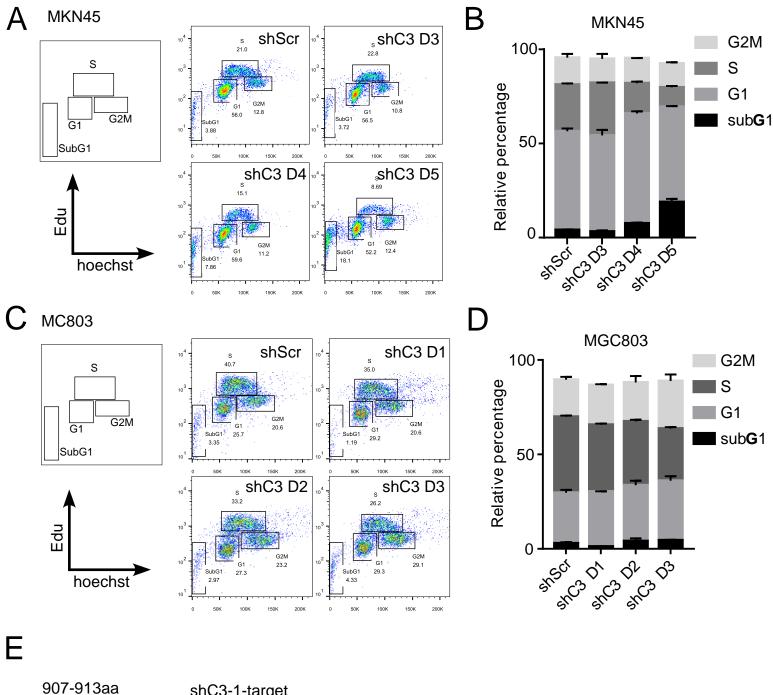
treatment induced G1/S cell cycle arrest in MKN45(c). The percentage of cell population at G1, S, and G2/M phases are represented as mean \pm S.D. of three independent experiments(d).

Figure S4. Arsenic sulfide increase celluar ROS in MGC803 and MKN45 cells and CsA redistributing NFATc3 localization.

(**a**, **b**) MGC803 (a) and MKN45 (b) treated with or without arsenic sulfide were stained with DCFH-DA (10 μ M, 20min, 37°C) and MFI of DCFH-DA was analyzed in each cell subset. Statistical significance was assessed using two-tailed Student's t-test. *p < 0.05; **p < 0.01; ***p < 0.001. (**c**) The distribution of NFATc3 in cytoplasm and nucleus after CsA treatment. Fold changes of NFATc3 protein relative to first line are indicated. (**d**) Relative survival varbility of AGS cells treated with contral, arsenic sulfide(5uM), NAC (10mM) and arsenic sulfide plus NAC measured by MTT assay. Statistical significance was assessed using two-tailed Student's t-test. *p < 0.05.

Figure S5. NFATc3 silencing alters the expression of RAG1 gene.

(a) qPCR analysis of RAG1 expression in indicated MKN45 cells. Statistical significance was assessed using two-tailed Student's t-test. *p < 0.05; **p < 0.01; ***p < 0.001. (b) qPCR analysis of RAG1 expression in arsenic sulfide treated MGC803 cells. Statistical significance was assessed using two-tailed Student's t-test. ***p < 0.001.


Figure S6. NFATc3 consensus elements in the promoters of Il-2 and RAG1


(a) The presence of NFAT-binding consensus sites in the promoters of IL2.
(swissregulon.unibas.ch/sr/). (b, c) Promoter (b) and coding region (c) sequences of human *RAG1* gene contain NFAT consensus elements (boxes). Primer used for ChIP-qPCR and the start codon

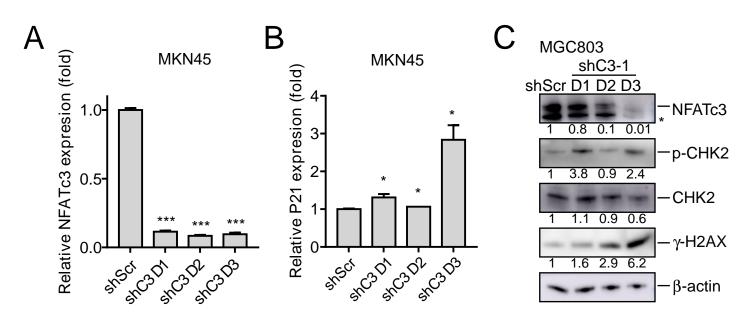

are indicated (underlined). (d) ChIP analyses at promoter of the IL2 locus on the indicated cells as positive control.(e) Promoter sequences of human *IL2* gene contain NFAT consensus elements (boxes). Primer used for ChIP-qPCR and the start codon are indicated (underlined).

Table	S 1	.primer	list
ruore	D I	.primer	mot

primer	sequence
HUMAN-NFATc3-qPCR-F	CGAGGGGCAGTAAAAGCATC
HUMAN-NFATc3-qPCR-R	CAGTGATTCGATGCACCTGG
HUMAN-GAPDH-qPCR-F	GGCACAGTCAAGGCTGAGAATG
HUMAN-GAPDH-qPCR-R	ATGGTGGTGAAGACGCCAGTA
HUMAN-p21-qPCR-F	GTCTTGTACCCTTGTGCCTC
HUMAN-p21-qPCR-R	GGTAGAAATCTGTCATGCTGG
HUMAN-RAG1-qPCR-F	CTGTTCCGGGTGAGATCCTTT
HUMAN-RAG1-qPCR-R	TAACAATGGCTGAGTTGGGAC

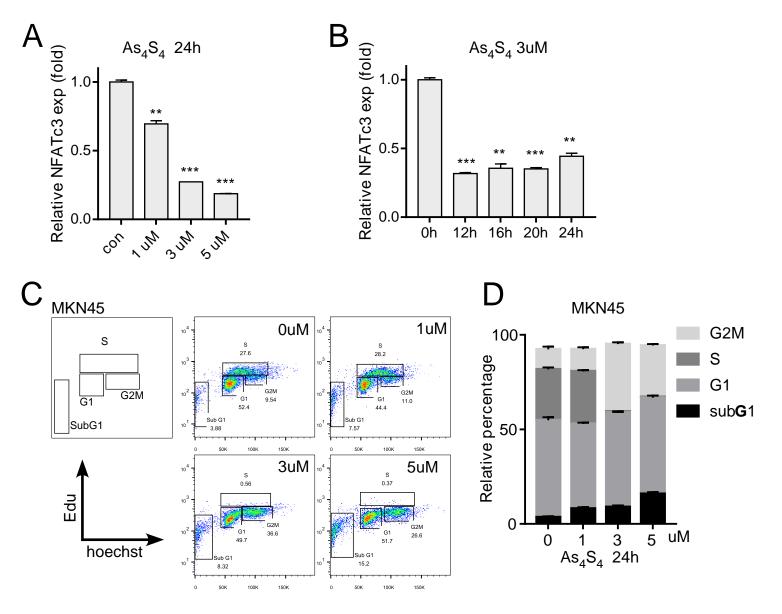
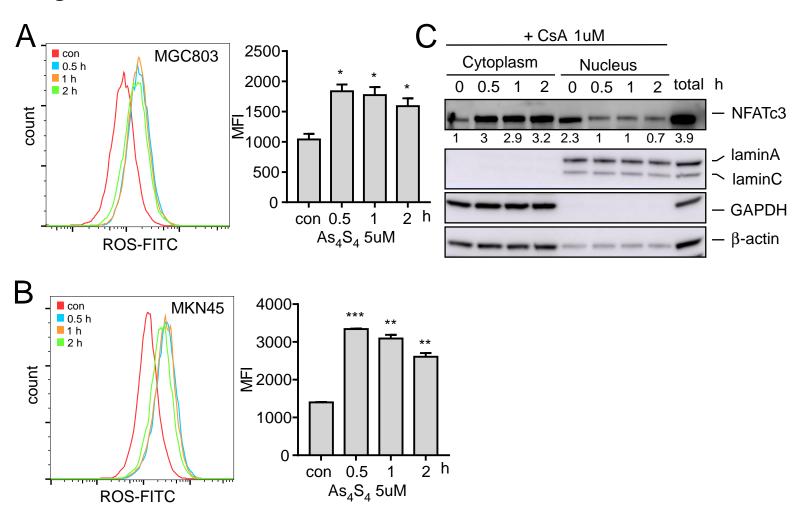
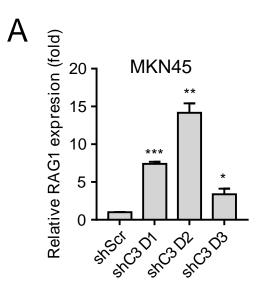
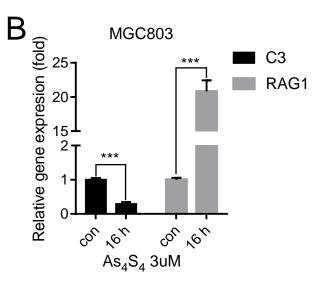
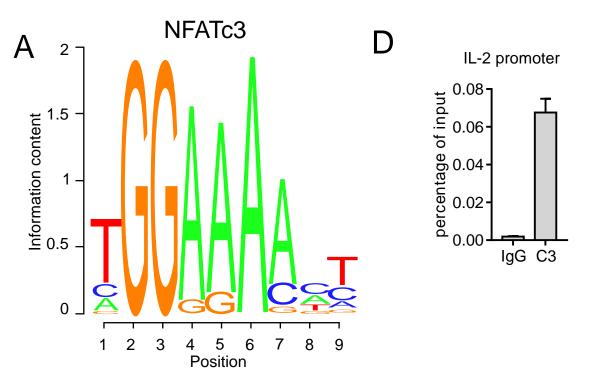






Figure S4

- E acatgttcagtgtagttttatgacaaagaaaatttt<u>ctgagttacttttgtatcccca</u>cccccttaaagaaaggaggaaa aactgtttcatacagaaggcgttaattgcatgaattagagctatcacctaagtgtgggctaatgtaacaaagagggat ttcacctacatccattcagtcagtctttgggggtttaaagaaattccaaagagtcatcagaa