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Data generation and all statistical analyses were performed using Stata/SE version 15.1 (StataCorp LP, College Station, TX, USA) with the Mersenne Twister random number generator and a starting seed of 13073199.[1]
For each scenario, a dataset of 10,000 observations was simulated 1,200 times. The interval between the baseline and follow-up wave was assumed to be equal for all participants. The program was written to disregard any dataset generated without sufficient cases of age-related macular degeneration (AMD) for analysis and loop until 1,200 valid datasets had been generated. However no datasets were disregarded during this simulation study. 
The parameters used to generate the data are provided in Table 1 below.
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[bookmark: _Ref501886341][bookmark: _Ref491188700]Table S1: Parameters used to generate data for simulation study
	Variable
	Population model

	Sex 
  0 Male
  1 Female
	


	Mean-centred age 
	


	Genotype 
  0 Absent
  1 Present
	


	Residence 
  0 High socioeconomic area
  1 Low socioeconomic area
	



	Iron intake 
  0 Low iron intake
  1 High iron intake
	


	Potential survival when  
  0 Deceased
  1 Alive
	


	Potential survival when  
  0 Deceased
  1 Alive
	If compliant with the monotonicity assumption:
 if 
If monotonicity assumption violated:


	Strata 
  0 Never-survivor
  1 Always-survivor
  2 Compliant-survivor
  3 Defiant-survivor
	
 if  & 
 if  & 
 if  & 
 if  & 

	Survival status when  
  0 Deceased
  1 Alive
	
 if ( & ) or ( & )
 if ( & ) or ( & )

	Potential outcome when  
  0 Disease absent
  1 Disease present
	
 if 

	Potential outcome when  
  0 Disease absent
  1 Disease present
	
 if 


	Non-missing outcome data 
  0 Missing outcome data
  1 Outcome data not missing
	     if 

            if   

	Age-related macular degeneration 
  0 Absent
  1 Present
	 if  & 
 if  & 
 if  or 

	Model coefficients:    or ; ,  or ;  or 




Generate sex , mean-centred age , an indicator for poor health  and an indicator of area of residence  for 10,000 participants.
Generate potential survival for high iron intake  conditional on ,  and .
For scenarios compliant with the monotonicity assumption:
Generate potential survival for low iron intake  conditional on ,  and  for participants who would survive following high iron intake (i.e. for those with )
For scenarios that violate the monotonicity assumption:
Generate potential survival under low iron intake  conditional on ,  and  for all participants.
Derive observed survival status  according potential survival status  and  and exposure [
Generate potential outcomes for low iron intake  conditional on ,  and  for participants who would survive under low iron intake (i.e. for those with )
Generate potential outcomes for high iron intake  conditional on , and  for participants who would survive under high iron intake (i.e. for those with )

Allocate observed outcome for age-related macular degeneration  deterministically according to , ,  and potential outcome (i.e.  or 
Generate the exposure, iron intake , conditional on  and .
Generate an indicator of non-missing outcome data [ conditional on ,   and  for survivors (i.e. those with ).
Allocate strata  according to potential survival status  and 

Figure S1: Flow chart of data generation process. Datasets were generated and analysed 1,200 times under each scenario


Stata code for simulation study

//	Generate single dataset

capture program drop sim_iron_data
program define sim_iron_data, rclass
syntax,	vm(numlist max = 1) uy(numlist max = 1) uz(numlist max = 1)
clear
quietly set obs 10000
tempvar pz z0 z1 strata py y0 y1

*	Exposure and covariates
quietly gen U = uniform() < invlogit(ln(0.5)) 	// unmeasured genotype
quietly gen V1 = uniform() < invlogit(0)		// sex
quietly gen V2 = floor(30 * runiform() - 15) // Mean centred age [-14,15]
quietly gen A = uniform() < invlogit((ln(0.75)*V1) + (ln(0.95)*V2)) // iron
quietly gen D = uniform() < invlogit(0)		// residence

*	Survival
quietly gen Z = .
quietly gen `pz' = ln(1.5) + (ln(2) * V1) + (ln(0.95) * V2) + (ln(`uz') *U)
quietly gen `z1' = uniform() < invlogit(`pz' + ln(2))
quietly gen `z0' = 0
if `vm' == 0 {
quietly replace `z0' = uniform() < invlogit(`pz') if `z1' == 1
}
if `vm' == 1 {					// Violation of monotonicity
quietly replace `z0' = uniform() < invlogit(`pz')
}
foreach b of numlist 0/1 {
quietly replace Z = `z`b'' if A == `b'
}

*	Strata
quietly gen `strata' = 2		 		     // compliant-survivors
quietly replace `strata' = 0 if `z0' == 0 & `z1' == 0 // never-survivors
quietly replace `strata' = 1 if `z0' == 1 & `z1' == 1 // always-survivors
quietly replace `strata' = 3 if `z0' == 1 & `z1' == 0 // defiant-survivors

*	Outcome
quietly gen Y = .
quietly gen `py' = ln(0.11) + (ln(`uy') * U) + (ln(1.5) * V1)+(ln(1.05)*V2)
quietly gen `y0' = uniform() < invlogit(`py') if `z0' == 1
quietly gen `y1' = uniform() < invlogit(`py' + ln(0.6)) if `z1' == 1
foreach b of numlist 0/1 {
quietly replace Y = `y`b'' if A == `b'
}

*	Empirical value of tau
quietly logistic `y1' i.`strata' i.(V1) V2 if inlist(`strata',1,2)
return scalar tau = exp(_b[2.`strata'])


*	Non-missing data
quietly gen R = . 
quietly replace R = uniform() < invlogit(ln(4) + (ln(1.4) * A) + ///
(ln(2) * V1)  + (ln(0.9) * V2) + (ln(0.8) * D)) if Z == 1
quietly replace Y = . if R == 0
end


//	Analyse single dataset

capture program drop analyse_sace_iron
program define analyse_sace_iron, eclass
version 14
preserve
tempvar ax sigmax as ar ssw g0 g1 h0 h1 gh0 gh1   	
tempname mat

*	Propensity for exposure
quietly logistic A i.V1 V2
quietly predict `ax'
sum `ax' if A == 1, meanonly
quietly gen `sigmax' = r(mean)
sum `ax' if A == 0, meanonly
quietly replace `sigmax' = r(mean) if e(sample)
quietly replace `ax' = 1 - `ax' if A == 0

*	Propensity for survival
quietly logistic Z i.(A V1) V2
quietly predict `as'
foreach i of numlist 0 1 {
quietly logistic Z i.V1 V2 if A == `i' 
quietly predict `g`i''
}

*	Propensity for non-missing data
quietly logistic R i.(A V1) V2 
quietly predict `ar' if e(sample)

*	Generate weights
quietly gen `ssw'  = (`sigmax') /(`ax' * `as' * `ar')


*	Marginal structural models
quietly logistic Y i.(A V1) V2 [pweight = `ssw']
local essw = _b[1.A]


*	Sensitivity approach
foreach b of numlist 0/1 {
sum `g`b'', meanonly
local nu_`b' = r(mean)			// marginal probability of survival
quietly logistic Y i.V1 V2 if A == `b'
quietly predict `h`b''
quietly gen `gh`b'' = `g`b'' * `h`b'' 
sum `gh`b'' if Z == 1, meanonly
local xi_`b' = r(mean) 	// marginal probability of both survival and AMD
}
local sa1 = ln((`xi_1') * (`nu_0'-`xi_0')  / (`xi_0'  * (`nu_1'-xi_1')))
foreach t of numlist 0.5 2 { 		// sensitivity parameters
if `t' == 2 {
local ta = 2
}
else {
local ta = 0
}
local q_`ta' = sqrt(((`nu_0' + `xi_1') * (1 - `t') + (`t' * `nu_1'))^2	///
+ (4 * `xi_1' * `nu_0' * (`t' - 1))) 


local sa`ta' = 	ln(((`nu_0' - `xi_0') / `xi_0') *				///
	((`nu_0' + `xi_1') * (`t' - 1) - (`t' * `nu_1') + `q_`ta'') / 	/// 
	((`nu_0' - `xi_1') * (`t' - 1) + (`t' * `nu_1') - `q_`ta''))
}

*	Covariate balance
quietly xi: pbalchk A V1 V2 U D if Y != ., nocatstandardize
matrix CBu = r(ssmeandiff)		// unweighted
quietly xi: pbalchk A V1 V2 U D if Y != ., wt(`ssw') nocatstandardize
matrix CB`ssw' = r(ssmeandiff) 	// weighted


*	Output
matrix `mat' = `essw', `sa0', `sa1', `sa2', CBu, CBssw
ereturn post `mat'
restore

end



Table S2: Average standardised difference in covariate levels between exposure groups among attending survivors, generated with 1,200 repetitions per scenario.
	Scenario
number
	Violation 
of
monotonicity
	Effect of genotype
	Covariate

	
	
	Survival
	Outcome
	Sex
	Age
	Area of residence
	Unmeasured genotype

	
	
	
	
	Unweighted
	Weighted
	Unweighted
	Weighted
	Unweighted
	Weighted
	Unweighted
	Weighted

	1
	No
	0.5
	0.5
	-0.28
	-0.02
	-0.26
	0.03
	0.01
	0.00
	0.11
	0.12

	2
	No
	0.5
	1.0
	-0.28
	-0.02
	-0.26
	0.03
	0.00
	0.00
	0.11
	0.12

	3
	No
	0.5
	2.0
	-0.28
	-0.02
	-0.26
	0.03
	0.01
	0.00
	0.11
	0.12

	4
	No
	2.0
	0.5
	-0.25
	-0.01
	-0.29
	0.02
	0.01
	0.00
	-0.08
	-0.09

	5
	No
	2.0
	1.0
	-0.25
	-0.01
	-0.30
	0.01
	0.01
	0.01
	-0.08
	-0.09

	6
	No
	2.0
	2.0
	-0.25
	-0.01
	-0.30
	0.01
	0.01
	0.00
	-0.08
	-0.09

	7
	Yes
	0.5
	0.5
	-0.21
	0.00
	-0.34
	0.00
	0.01
	0.00
	0.05
	0.04

	8
	Yes
	0.5
	1.0
	-0.21
	0.00
	-0.34
	0.00
	0.01
	0.01
	0.05
	0.04

	9
	Yes
	0.5
	2.0
	-0.21
	0.00
	-0.34
	0.00
	0.01
	0.01
	0.05
	0.04

	10
	Yes
	2.0
	0.5
	-0.21
	0.00
	-0.35
	0.00
	0.01
	0.01
	-0.04
	-0.04

	11
	Yes
	2.0
	1.0
	-0.21
	0.00
	-0.35
	0.00
	0.01
	0.00
	-0.04
	-0.04

	12
	Yes
	2.0
	2.0
	-0.21
	0.00
	-0.35
	0.00
	0.01
	0.00
	-0.04
	-0.04

	 = odds ratio effect of unmeasured genotype on survival;  = odds ratio effect of unmeasured genotype on outcome






Table S3: Log odds ratio estimates from simulation study scenarios with a null effect of the unmeasured variable on the outcome.
	
	
	Estimation method
	Monotonicity

	
	
	
	Valid
	Violated

	
	
	
	Estimate*
	SE
	SB (%)
	MSE
	Estimate*
	SE
	SB (%)
	MSE

	1.0
	0.5
	Average 
	1.00
	0.10
	
	 
	1.00
	0.09
	
	

	
	
	Marginal structural model
	-0.51
	0.11
	-3
	0.01
	-0.52
	0.10
	-4
	0.01

	
	
	Sensitivity analysis
	
	
	
	 
	
	
	
	

	
	
	  SP = 0.5
	-0.31
	0.10
	195
	0.05
	-0.41
	0.10
	106
	0.02

	
	
	  SP = 1
	-0.52
	0.10
	-5
	0.01
	-0.51
	0.10
	6
	0.01

	
	
	  SP = 2
	-0.81
	0.10
	-296
	0.10
	-0.66
	0.10
	-157
	0.03

	1.0
	2.0
	Average 
	1.00
	0.09
	
	 
	1.00
	0.10
	
	

	
	
	Marginal structural model
	-0.51
	0.10
	-1
	0.01
	-0.51
	0.10
	3
	0.01

	
	
	Sensitivity analysis
	
	
	
	 
	
	
	
	

	
	
	  SP = 0.5
	-0.35
	0.09
	173
	0.03
	-0.42
	0.09
	99
	0.02

	
	
	  SP = 1
	-0.50
	0.09
	9
	0.01
	-0.50
	0.09
	17
	0.01

	
	
	  SP = 2
	-0.73
	0.09
	-242
	0.06
	-0.62
	0.09
	-117
	0.02

	* Estimates of the log odds ratio have been averaged over 1,200 simulated datasets from each scenario.
MSE = mean square error; SACE = survivor average causal effect; SB = standardized bias as a percentage; SE = empirical standard error; SP = sensitivity parameter.
 is the odds ratio effect of U on the outcome.  is the odds ratio effect of U on survival.  is the ratio of the odds of the outcome following high iron intake between compliant-survivors and always-survivors. True SACE log odds ratio = ln(0.6) = -0.511
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[bookmark: _GoBack]Figure S2: Estimates from simulation study scenarios with a null effect of the unmeasured variable on the outcome. Estimated using 10,000 observations simulated 1,200 times for each scenario. The odds ratio effect of the unmeasured variable  on the outcome , , was set to 1.0. The black line represents the true exposure effect (on the log odds ratio scale) of -0.51.  is the odds ratio of the unmeasured variable, , on survival, .



Proof for Equation 12
The notation for the following equations is as defined in the manuscript. Measured exposure-outcome confounders are denoted . 
Note, in the illustrative example, the exposure level given by  (high iron intake) is considered to be predictive of greater levels of survival and a lower probability of an undesirable outcome (age-related macular degeneration). Whereas the in the paper by Egleston (2007) referred to below, an exposure level equal to one (indicating vision loss) is hypothesised to be associated with lower rates of survival and a greater risk of the undesirable outcome (emotional distress). Therefore, there are differences in the notation between the two papers.

Under the assumptions of ignorable treatment assignment (conditional on measured confounders) and outcome values missing at random:
	
	
	

	
	(From Egleston 2007, page 537)
	(1)



	
	
	

	
	(From Egleston 2007, page 537)
	(2)



Under the assumptions of conditional ignorability, and outcome values missing at random:
	
	
	

	
	
	

	
	(From Equation 4.1, Egleston 2007, page 533)
	(3)


Under the monotonicity assumption, this value is observable because all survivors with exposure  are considered to be always-survivors.

	
	(From Equation 4.8, Egleston 2007, page 536)
	(4)


 when :
	
	
	

	
	
	

	
	
	

	
	(From Egleston 2007, page 536)
	(5)


Under the assumption of monotonicity, this value is also observable because all survivors with exposure  will have the same distribution of , regardless of stratum. 

	
	(From Equation 3.1, Egleston 2007, page 530)
	(6)


 when :
	
	
	

	
	
	

	
	(Equation 12)
	(7)
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