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S1. Databases 

The GDB-13 database [1] was obtained from the official website.1 The SMILES of the database 

were sanitized and canonicalized using RDKit [2] and those that gave errors during the process 

were discarded. This yielded a total of 975,820,187 canonical SMILES strings. All the training 

and validation sets were uniformly randomly sampled. 

The ChEMBL 25 database [3] was also used to train models. It was obtained from the official 

website2 and further cleaning was applied as follows: First, using the MolVS 0.1.1 library [4], 

all the molecules were sanitized, duplicates were removed, stereochemistry was removed, 

salts and all fragments except for the biggest one were removed and the canonical tautomer 

was obtained (see MolVS documentation3). Then, all molecules containing heavy atom types 

other than (C, N, O, S, Cl, Br, F) were removed. After, a series of filters were applied 

sequentially to remove outliers (See Table 1). To filter outliers, a histogram was plotted for 

each of the descriptors used and, in the case of discrete descriptors, only values with more 

                                                        
1 http://gdb.unibe.ch/downloads/  
2 https://www.ebi.ac.uk/chembl/ 
3 https://molvs.readthedocs.io/en/latest/ 
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than 0.05% of the total molecules in the set were kept. In continuous descriptors an arbitrary 

cut-off was set. Lastly, canonical SMILES were tokenized (see next section) and some string-

based filters were applied. First, SMILES with too many tokens were removed. Then, SMILES 

with a ratio of non-atom tokens higher than 2 were also removed. This filtered out molecules 

with too much branching. Finally, any non-ring token that appeared in less than 0.05% of the 

molecules was removed. This accounted for 26 tokens that appear seldom. The final database 

size was 1,562,045 compounds. 

Filter Range allowed Size after  

Full ChEMBL 25 - 1,870,461 

Standardization MolVS complete sanitization and filtered molecules 

with heavy atoms other than C, N, O S, Cl, Br and F. 

1,647,440 

Heavy atom count 8 ≤ HAC ≤ 70 1,619,246 

Ring count (SSSR) RC ≤ 10 1,618,427 

Size of largest ring SLR ≤ 8 1,597,267 

# C atoms / HAC ratio ≥ 0.5 1,590,609 

# tokens NT ≤ 91 (used 0.1% cut-off) 1,568,307 

# tokens / HAC ratio ≤ 2.0 1,564,030 

Token filter Removed all non-ring tokens with less than 0.05% 

canonical SMILES strings. 

1,562,045 

Table 1: Filters applied to ChEMBL 25 database in order (from top to bottom). The first entry is not a filter but represents 

ChEMBL 25 initial state. A cut-off of 0.05% was used in all the histograms (unless specified) to obtain the ranges for discrete 

filters. In the case of ratios, an arbitrary cut-off was set. 

S2. Benchmark 

Adaptive learning rate decay strategy 

The adaptive strategy used in all trained models is based on exponential learning rate decay. 

A parameter 0 < 𝛾 < 1 is multiplied after each epoch by the previous learning rate, thus 

reducing it. In this approach, 𝛾 is multiplied by the previous learning rate if the average UC-

JSD from the last 𝑎 epochs is not lower than the current one. Additionally, the learning rate is 

not reduced in the first 𝑝 epochs after a change (i.e., patience). This allows models to continue 



3 

 

to train with the same learning rate given that the model is still improving while still being 

resilient to training instability. 

The following parameters were used in all models: 𝛾 = 0.8, 𝑎 = 4 and 𝑝 = 8. The ADAM 

optimizer [5] was used throughout with default parameters 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =  10−8, 

the starting learning rate was established at 𝑙𝑟𝑠𝑡𝑎𝑟𝑡 = 5 ∙ 10−4 and the end learning rate was 

set to 𝑙𝑟𝑒𝑛𝑑 = 10−5. These values were obtained experimentally. 

Obtaining statistics for each model 

Following [6], the GDB-13 models were sampled 2 billion times at the best epoch. Due to the 

computational costs of performing the sampling with several models and calculating the 

statistics, only one sample for each model was performed. Confidence intervals were obtained 

by calculating the expected variance when sampling the ideal model (see section “The 

statistical properties of the uniform model” in the Suppl. Methods). 

Molecule NLL of randomized SMILES models 

To be able to compare the canonical and randomized SMILES models, the NLLs of the 

randomized SMILES have to be normalized. To achieve that, 𝑟 different randomized SMILES 

are calculated on each molecule and then repeats are removed. The NLL is calculated in the 

randomized SMILES model for each of the randomized SMILES of the molecule. Then, for each 

molecule, all randomized SMILES are grouped, converted back to probabilities and summed. 

The NLL is calculated back from the cumulative probability of each molecule, which is a lower 

bound approximation of the real probability of sampling a given molecule whose error 

depends on 𝑟. 

S3. Similarity maps 

 Similarity maps were based on previous literature [7]. Molecular Quantum Number (MQN) 

[8] fingerprints were calculated using the JChem Library 18.22.0 from ChemAxon4 for all 

molecules in two sets randomly sampled from GDB-13, one with 25 million molecules and 

                                                        
4 http://www.chemaxon.com/ 
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another with 1,000 molecules, also called probes. Next, the Manhattan distance (i.e., city 

block distance) was calculated between all molecules from the first set and the probes yielding 

a matrix with 25 million rows and 1,000 columns. Then, the means 𝜇𝑗  and standard deviations 

𝜎𝑗 were calculated among all columns in the matrix and the normal distribution survival 

function 𝑑′𝑖𝑗 = 𝑠𝑓(𝑑𝑖𝑗 , 𝜇𝑗 , 𝜎𝑗) to each distance in the matrix, thus normalizing them to the 

interval [0,1]. Then the procedure was the same as with the maps described in previous 

literature [6, 9]. A Principal Component Analysis (PCA) was performed to the unnormalized 

and unstandardized data, the first two dimensions were selected, and the 25 million molecules 

were binned given a rectangular viewport (𝑤, ℎ). Each bin represents a pixel in the plot. A 

descriptor was calculated for the values in each bin and coloured using Hue-Saturation-Value 

(HSV). The saturation was fixed at 1.0, the hue, which depends on the range of the descriptor, 

ranges from blue to magenta, and 𝑣𝑎𝑙𝑢𝑒 = min(0.25, log10( 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑟𝑚)), where 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑟𝑚 

is the number of molecules in a bin normalized to [0, 1].  

S4. The statistical properties of the uniform 

model 

Deriving an expression for the variance of the coverage  

By treating the space of GDB-13 as the only valid SMILES, the task of regenerating the database 

can be simplified to a problem of sampling with replacement. Let 𝑛 ∈ ℤ+ be the size of the 

total possible sample space and 𝑘 ∈ ℤ+ be the sample size. We now enumerate the sample 

space and define the random variable 𝑋 ≔ {𝑋1, … , 𝑋𝑛}, 𝑋𝑖 = 1 if the observed sample 

contains compound 𝑖 and 0 otherwise. Let the probability 𝑝𝑖  denote the probability of 

sampling the respective compound 𝑖. Then for a sample of size 𝑘, the probability that none of 

the sampled compounds is compound 𝑖 is (1 − 𝑝𝑖)𝑘, yielding the reciprocal probability, which 

represent the probability of sampling 𝑖 to be 1 − (1 − 𝑝𝑖)𝑘 . Using the linearity property of 

expectation, the expected number of unique compounds sampled in 𝑘 samples becomes 
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𝐸[𝑋] = 𝐸 [∑ 𝑋𝑖

𝑛

𝑖=1

] = ∑ 𝐸[𝑋𝑖]

𝑛

𝑖=1

= ∑(1 − (1 − 𝑝𝑖)𝑘)

𝑛

𝑖=1

 

(Equation 1) 

It has been proven by [6] that the expected value is maximal when the distribution is uniform, 

yielding the following expectation for the number of unique compounds sampled in the 

optimal model: 

𝐸[𝑋] = 𝑛 (1 − (1 −
1

𝑛
)

𝑘

) = 𝑛 (1 − (
𝑛 − 1

𝑛
)

𝑘

) 

(Equation 2) 

By the definition of variance, 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2, we observe that the first term 𝐸[𝑋2] 

can be obtained by: 

𝐸[𝑋2] = 𝐸 [(∑ 𝑋𝑖

𝑛

𝑖=1

)

2

] = 𝐸[𝑛𝑋1
2 + 𝑛(𝑛 − 1)𝑋1𝑋2] = 𝑛𝐸[𝑋1] + 𝑛(𝑛 − 1)𝐸[𝑋1𝑋2] 

(Equation 3) 

where 𝐸[𝑋1𝑋2] is the probability that any arbitrarily chosen pair of compounds have both 

members present in the sample. Note that 𝐸[𝑛𝑋1
2] = 𝑛𝐸[𝑋1], given that both 𝑋1

2and 𝑋1 can 

only take the values {0, 1}, and this always happens at the same time. Using the inclusion-

exclusion principle, we can express 𝐸[𝑋1𝑋2] by: 

𝐸[𝑋1𝑋2] = 1 − 2 (
𝑛 − 1

𝑛
)

𝑘

+ (
𝑛 − 2

𝑛
)

𝑘

 

(Equation 4) 

Inserting, we get the expression for the variance of total number of compounds sampled. 

𝑉𝑎𝑟(𝑋) = 𝑛 (1 − (1 −
1

𝑛
)

𝑘

) + 𝑛(𝑛 − 1) (1 − 2 (
𝑛 − 1

𝑛
)

𝑘

+ (
𝑛 − 2

𝑛
)

𝑘

)

− 𝑛2 (1 − (1 −
1

𝑛
)

𝑘

)

2

 

(Equation 5) 
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Since the coverage as a fraction of the total number is the desired metric, we divide 𝐸[𝑋] and 

𝑉𝑎𝑟(𝑋) by 𝑛 and 𝑛2, respectively. 

Proof that the variance is maximal when the model is uniform 

Since |𝑋|  ≥ 1 (at least one unique compound must be generated for any sample of size 𝑘 >

1), we note that both 𝐸[𝑋2], 𝐸[𝑋]2 are monotonically increasing functions w.r.t 𝐸[𝑋] on this 

domain, which for 𝐸[𝑋]2 holds by the definition of a quadratic function and, since 𝑋𝑖 ∈ {0,1}, 

𝐸[𝑋2] = 𝑛𝐸[𝑋] + ∑ 𝐸[𝑋𝑖𝑋𝑗]𝑖≠𝑗 , where the first term is equal to 𝐸[𝑋] and the second term is 

at least non-negative. Furthermore, observe that by the definition of 𝐸[𝑋2], 𝐸[𝑋2]  > 𝐸[𝑋]2, 

as 𝑛 > 𝐸[𝑋] for any finite sample size 𝑘. In fact, it can be shown that 𝐸[𝑋2] always grows at 

least as fast as 𝐸[𝑋]2, by differentiating with respect to 𝐸[𝑋]: 

𝑑𝐸[𝑋]2

𝑑𝐸[𝑋]
= 2𝐸[𝑋]  

𝐸[𝑋2] = 𝑛 (1 − (1 −
1

𝑛
)

𝑘

) + 𝑛(𝑛 − 1) (1 − 2 (
𝑛 − 1

𝑛
)

𝑘

+ (
𝑛 − 2

𝑛
)

𝑘

) 

= 𝑛𝐸[𝑋] + 𝑛(𝑛 − 1) ((1 − (
𝑛 − 1

𝑛
)

𝑘

) + (1 − (
𝑛 − 1

𝑛
)

𝑘

) + (
𝑛 − 2

𝑛
)

𝑘

− 1) 

= 𝑛𝐸[𝑋] + 2𝑛(𝑛 − 1)𝐸[𝑋] + 𝑛(𝑛 − 1) ((
𝑛 − 2

𝑛
)

𝑘

− 1) 

𝑑𝐸[𝑋2]

𝑑𝐸[𝑋]
= 𝑛 + 2𝑛(𝑛 − 1) = 2𝑛2 − 𝑛 

(Equation 6) 

Note that, as 𝑘 → ∞, 𝐸[𝑋] → 𝑛, thus the inequality  
𝑑𝐸[𝑋2]

𝑑𝐸[𝑋]
>

𝑑𝐸[𝑋]2

𝑑𝐸[𝑋]
 holds for any sample size 

𝑘 when 2𝑛2 − 𝑛 > 2𝑛, which is true ∀𝑛 >
3

2
 (also for negative 𝑛, but since our choices for the 

size of sample space are strictly positive integers, we ignore this solution). 
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A corollary to this result is that the variance grows monotonically w.r.t 𝐸[𝑋] for any practical 

choice of 𝑛. Using the fact that 𝐸[𝑋] is maximal for the uniform model, also implies that the 

variance is maximal, and we get the desired result. ∎ 

Example of using the variance of the uniform model to estimate 

variance of model coverage for GDB-13 

Using the derived expression for the variance for a uniform model, we can use it as an upper 

bound for the variance of the real models. In particular, we can use this to construct 

confidence intervals for our sampling results. Let 𝐶 denote the coverage of a model with the 

confidence interval computed by 

𝑃 (μ𝐶 − 𝑍α ⋅
σ𝐶

√𝜈𝑠

≤ 𝐶 ≤ μ𝐶 + 𝑍α ⋅
σ𝐶

√𝜈𝑠

) = 1 − α 

(Equation 7) 

where 1 − α is a desired confidence level and 𝜈𝑠 the degrees of freedom. Here, 𝑍α is computed 

using Student’s t-distribution with one degree of freedom. For two different models with 

corresponding sampled model coverages 𝐶1 > 𝐶2, let us consider a conservative estimate. 

Assume that we have performed just two samples for each model, 𝜈𝑠1
= 𝜈𝑠2

= 1. Since the 

true mean model coverages are unknown, we look at the worst edge case scenario, where 𝐶1 

would have been sampled from the upper bound of some confidence interval, and 𝐶2 from 

the lower bound of another interval. To ensure that, even in this worst case, the confidence 

intervals will not overlap the difference between the sampled coverage is expressed by  

𝐶1 − 𝐶2 ≥ 2𝑍ασ1 + 2𝑍ασ2 

(Equation 8) 

However, the true values of σ1, σ2 are unknown, and thus we use the upper estimation 

σ∗ from the uniform model. Thus, if the difference in coverage between the models fulfill 

𝐶1 − 𝐶2 ≥ 4𝑍ασ∗ 

(Equation 9) 
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we know that there is a statistical significance between the models at confidence level 1 − α. 

Using this threshold, given 𝑛 = 975,820,187 , 𝑘 = 2 ⋅ 109 and α = 0.001, the values σ∗ =

8.952 ⋅ 10−6 and 𝑍𝛼 = 3.183 ⋅ 102, resulting in an upper estimate of significant difference in 

model coverage of 0.28 %. 
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