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Figure S1. Identification of conserved mid-embryonic stages during medaka embryogenesis by

transcriptome similarity. The developmental stages close to stage 24 of the medaka embryogenesis



(highlighted in gray) were highly conserved across the examined vertebrate species. a—e All- to all-
stage comparisons of the transcriptome data of medaka embryos against zebrafish (a), western clawed
frog (b), mouse (c¢), chicken (d), and softshell turtle (e) embryos are shown. The Spearman correlation
coefficient was calculated by using FPKM values of orthologous genes to evaluate the transcriptomic
similarity between samples. Lines were colored according to the developmental stages of each
species. The number of orthologous genes used for comparing transcriptomes between species is
shown at the top of each panel. For all line graphs, data are presented as mean + 1 standard deviation
of all pairs of biological replicates. f Conserved embryonic stages identified by 1:1 orthologue based
method and by orthologue-group based method. The percentages of medaka developmental stages
included in the most similar (lowest 1% of expDists) combinations of staged embryos from six
vertebrates (mouse, chicken, softshell turtle, western clawed frog, zebrafish, and medaka) are shown
as Pip (see Methods for details). Higher Py, values indicate developmental stages that are more highly
conserved among the embryos of these vertebrates. expDist values were calculated to assess
evolutionary conservation throughout the evolution of each of the six vertebrate species (see
Additional file 3: Text S1 and Methods for details). To calculate expDists in the vertebrates, whole-
embryo expression levels of 6,038 1:1 orthologues and 28,752 orthologue groups in the embryos of
the six vertebrates were used for 1:1 orthologue based method and for orthologue-group based
method, respectively [7,8,94] (see Additional file 3: Text S1 and Methods for details). Error bars
represent the standard deviations for Py, values in 100 randomly selected biological replicates (BRI-
exp). Changes in the Py, values of the developmental stages were statistically significant (Friedman
test with 100 randomly selected BRI-exp for each species). Statistical information of the Friedman
test is as follows: x> = 1455.6, df = 15, and P < 2.2 x 107" for 1:1 orthologue based method and y* =
1409.5, df = 15, and P < 2.2 x 107 for orthologue-group based method. g Phylogenetic relationships

of the six vertebrate species referenced in calculating expDists.
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Figure S2. Genomic distribution of mouse, chicken, and medaka ACRs with respect to genome
annotations. a Stacked bar graph shows the percentages of ACRs overlapping genomic regions with
different annotations. ACRs in promoters were defined as those overlapping with regions between 2
kb upstream and 1 kb downstream of all transcription start sites (TSSs) of protein-coding genes.
Proximal ACRs are defined as those within 5 kb upstream and 1 kb downstream of TSSs. ACRs in
exons were defined as those overlapping with exons of protein-coding genes but not overlapping with
promoters. ACRs in introns were defined as those in gene bodies of protein-coding genes but not
overlapping with either exons or promoters. Proximal ACRs were defined as those overlapping with
regions between 5 kb upstream and 1 kb downstream of all TSSs but not overlapping with either
promoters or gene bodies. Distal ACRs are defined as the others not overlapping gene bodies. b The
percentages of ACRs overlapping with promoters (at any of the developmental stages) according to
the distances from the annotated TSSs are shown. Note that the genomic distributions of ACRs shown

here were similar to those in previous studies [26,27].



Chr12 mm3
111,142 kb 111,143 kb 111,144 kb Rcor1; Traf3

— —
ATAC-seq - 4 ,
E10.5 *
i ‘s
ATAC-seq ‘
E12.5
" — .
Chr 8 mm9

46,771 kb 46,772 kb 46773kb  Jrf2
Il Il Il
]

[
ATAC-seq

E10.5 - b
- -
ATAC-seq
E12.5 L
-
Chr 18 mm257
75,502 kb 75,503 kb 75,504 kb Ctif

ATAC-seq

T e 888

ATAC-seq m =
E12.5 I ‘ a

Chr 19 mm324
47,908 kb 47,909 kb 47,910 kb Itprip

—

ATAC-seq ]

E10.5 a
ATAC-seq

E1 2.5

Chr 2 mm422

4,556 kb 4,557 kb 4,558 kb Frmd4a

ATAC-seq - . [

E10.5 y

)
5 J (-
e~

ATAC-seq — -
E12.5
___....h_.l.-_.‘__‘.._._ ‘ L 3

Chr5 mm622

111,691 kb ‘ 111,692kb 111,693kb ‘

|
[ ] P
ATAC-seq _—
E10.5
aiibe.
ATAC-seq [T PN
E12.5 \
ann el

C130026L21Rik; E130006D01Rik

Chr 14 mm7

61,004 kb 61,005 kb 61,006 kb Tnfrsf19
ATAC-seq — -
E10.5 ‘ ’

- F .
ATAC-seq -_—
E12.5
T .
Chr 18 mm109
56,897 kb 56,898 kb 56,899 kb March3

Il Il Il Il Il Il Il
[ ]

ATAC-seq - -

E10.5

ATAC-seq

E12.5

=
N %

Chr9 mm303

103,678 kb 103,679 kb 103,680kb  4932413F04Rik; Nphp3
—  —— ! ]

ATAC-seq oy

E10.5 0
ATAC-seq - -

E12.5

Chr 5 mm394

24,730 kb 24,731 kb 24,732kb  Wdr86; Crygn
Il Il Il Il Il Il Il

[ ]

ATAC-seq - - -~
E10.5 -
ATAC-seq — T P

E125 b

Chr 2 mm515
75,421 kb 75,422 kb 75423 kb 75,424 kb Mtx2; 9430019J16Rik
L —————

ATAC-seq - - u - Y
E10.5
e 4

ATAC-seq - -

E125 h,

b ()

Chr 1 mm790

127,554 kb 127,556 kb Tmem163
[

ATAC-seq

E10.5

ATAC-seq

E125 I
. —"y

Figure S3. Enhancers that drive wider expression tend to have higher ATAC-seq signals.

Enrichments of whole-embryo ATAC-seq reads in E10.5 and E12.5 mice and in vivo enhancer

activity (LacZ reporter assay) in E11.5 mice at representative enhancers (red regions) from the VISTA

Enhancer Database [23]. Images of embryos from the VISTA Enhancer Database [23] are shown with
the VISTA Enhancer ID and the flanking genes. Enrichment of ATAC-seq reads shown in each panel

represents the mean value of the three biological replicates. Deep blue boxes indicate the identified



ACRs. Detailed information on the annotated enhancers from the VISTA Enhancer Database [23] is
given in Additional file 1: Table S9.
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Figure S4. Four different methods for estimating evolutionary ages of ACRs. a Different methods

used for estimating evolutionary ages of ACRs (methods [-IV). These four methods differ regarding

whether the ACRs consisting of multiple regions with different evolutionary origins are subdivided

into separate ACRs, and in whether the secondarily lost ACRs are excluded (see Methods for details).

b Genome browser excerpts showing representative ACRs (deep blue boxes), their evolutionary ages

estimated by the different methods, and the enrichments of ATAC-seq reads (deep blue signals).

Evolutionary ages of ACRs were estimated by the four different methods (methods I-1V; see Methods

for details) with whole-genome pairwise alignments between the different chordate species and the

reference genomes. Colored regions in the tracks of “Pairwise alignment” represent aligned sequences

of the reference genome to the corresponding species genome. Colors of ACRs in the track of

[o)



“Estimated evolutionary ages” indicate the estimated evolutionary ages. Each category includes ACRs
that have originated during the corresponding-colored period in the evolutionary trajectory shown in

c. ¢ The phylogenetic tree of the species used for pairwise alignment.
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Figure S5. Categorization of evolutionary ages of ACRs and expressed protein-coding genes did not
differ among different methods. In both cases of ACRs and expressed protein-coding genes,
proportional distributions of their evolutionary ages were similar across the different methods (see
also Figure 2). We also noted that almost all ACRs have been acquired since the origin of vertebrates,
whereas most expressed protein-coding genes were acquired before that. Stacked bar graphs show the
numbers of evolutionarily categorized ACRs and expressed protein-coding genes (FPKM > 1) at each
developmental stage in mouse (a, b), chicken (¢, d), and medaka (e, f). The evolutionary ages of
ACRs were estimated based on Methods II-1V (see Methods and Additional file 2: Figure S4 for
details). The evolutionary ages of protein-coding genes were estimated according to the most recent
common ancestors of all the species sharing the similar sequences of the genes. In contrast to Figure

2, the expressed genes that were estimated to be lost secondarily in any of the aligned species are



included here (see Methods for details). Colors in each stacked bar graph indicate the categories of the
evolutionary ages of each element. Each evolutionary category includes ACRs or expressed protein-
coding genes that originated during the corresponding-colored period in the phylogenetic trees shown

in g for mouse, h for chicken, and i for medaka.
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Figure S6. The recapitulative pattern was also observed for relative sequence length of evolutionarily
categorized ACRs within the genome. The overall recapitulative pattern was also apparent for the
genomic fractions of ACRs as well as for the developmental chromatin accessibility shown in Figure
3. The percentages corresponding to the summed length of evolutionarily categorized ACRs divided
by the total length for all categories at developmental stages in three vertebrate species. The color of
each category indicates the estimated evolutionary age of the region, as represented in the
phylogenetic trees adjacent to the graphs. In each graph, the developmental stages with the highest
value from the phylotypic period are highlighted in the corresponding color. Although the
developmental stages with maximum chromatin accessibility of American alligator—turkey in the mid-
to-late chicken embryogenesis did not follow the recapitulative pattern, the overall recapitulative

pattern was observed.
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Figure S7. Developmental gene expression levels did not show a recapitulative pattern in the analysis
including genes lost secondarily, related to Figure 4. The graphs presented were generated by using
the same method as for Figure 4, except that the secondarily lost genes in any of the aligned species
were included here (see Methods for details). In brief, the evolutionary age of each protein-coding
gene was estimated according to the most recent common ancestors of all the species sharing the
similar gene sequences. Statistical information of the Kruskal-Wallis rank sum test is given in
Additional file 1: Tables S10.
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Figure S8. The recapitulative pattern of whole-embryo chromat

between methods I, I1, I11, and IV, related to Figure 3. a—c The graphs presented were generated by
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using the same method as for Figure 3, except for the method to estimate the evolutionary ages of
ACRs. In short, method II included ACRs that were estimated to be lost secondarily in any of the
aligned species (a), whereas methods I1I and IV did not subdivide ACRs (see Methods, Additional
file 3: Text S2.1, and Additional file 2: Figure S4 for details). For each ACR, we determined the
species with similar sequences of the ACR, and then estimated the evolutionary age based on the most
recent common ancestors of all these species. Method III excluded ACRs that were estimated to be
lost secondarily in any of the aligned species (b), whereas method IV did not exclude these ACRs (¢).
Statistical information of the Kruskal-Wallis rank sum test is given in Additional file 1: Tables S11—
13.
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Figure S9. Essentially the same recapitulative pattern was observed in the analysis using different

sets of species. The graphs were generated by using the same method as for Figure 3, except with

different sets of genomes (see Additional file 3: Text S2.2 for details). Statistical information of the
Kruskal-Wallis rank sum test is given in Additional file 1: Table S14.
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Figure S10. Essentially the same recapitulative pattern was observed for the analyses with different

criteria in filtering ATAC-seq reads. The graphs were generated by using the same method as for

15



Figure 3, except that uniquely hit ATAC-seq reads were used (a; see Methods and Additional file 3:
Text S2.3 for details), ATAC-seq reads aligned to the mitochondrial genome were removed (b; see
Methods and Additional file 3: Text S2.4 for details), or aligned read depth was not normalized (c; see
Methods and Additional file 3: Text S2.5 for details), respectively. Statistical information of the
Kruskal-Wallis rank sum test is given in Additional file 1: Tables S15-17.
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Figure S11. Chromatin accessibility of mouse early stages did not show the recapitulative pattern.
Publicly available ATAC-seq data [28] of mouse preimplantation embryos (early two-cell stage, two-
cell stage, four-cell stage, and eight-cell stage; see Methods for details) were used to test the
recapitulative tendency in early mouse stages. The same method used for Figure 3 was applied for this
analysis, except that ATAC-seq reads aligned to the mitochondrial genome were removed and aligned
read depth was not normalized (see Methods for details). Statistical information of the Kruskal-Wallis
rank sum test is given in Additional file 1: Table S18.
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Figure S12. Exonic ACRs did not follow a recapitulative pattern. Relative ATAC-seq signals of
exonic ACRs (a), non-exonic ACRs overlapping promoters (b), and non-exonic ACRs outside of



promoters (¢) are shown. Note that relative ATAC-seq signals of non-exonic ACRs tended to show
the recapitulative pattern. Statistical information of the Kruskal-Wallis rank sum test is given in
Additional file 1: Tables S19-21.
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Figure S13. Similar recapitulative pattern observed for the chromatin accessibility under strong
negative selection. The percentages corresponding to the summed signal intensity of regions under
strong negative selection within ACRs (defined by phastCons [30]) for each evolutionary category
divided by the total signal intensity for all ACRs in all categories at each developmental stage. Note
that there is no graph for the evolutionary category of the newest ACRs, as the regions under the
negative selection detected by phastCons are required to be aligned against one or more other species’
genome(s), and species-specific ones are not included. Statistical information of the Kruskal-Wallis
rank sum test is in Additional file 1: Table S22.
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Figure S14. No ACR could be detected at three of five representative regulatory regions associated
with taxon-specific features. These regulatory elements are known to be involved in the development
of taxon-specific morphological features [20,31-34]. The mean ATAC-seq read enrichments of the
three biological replicates (deep blue signals) and ACRs (deep blue boxes) at the five regulatory
regions are shown. The two mouse enhancer regions overlapped identified ACRs, whereas no ACR
could be detected at the remaining three enhancer regions by whole-embryo ATAC-seq analysis. This
is consistent with previous studies showing that these enhancer activities were observed in a limited
part of developing embryos (the frontonasal region for the mouse Wnt5a enhancer [31]; the posterior
margin of the forelimb for the chicken Sim/ enhancer [20]; the posterior regions of the pectoral fin
buds for the medaka sik enhancer [32]). On the other hand, ACRs were detected at the Sath2 and
Fezf2 enhancer regions in mouse embryos, possibly because these enhancer regions were accessible in
a sufficient number of cells to be detected by whole-embryo ATAC-seq analysis (the deep layer of the

neocortex for the mouse Sath2 enhancer [33]; the neocortex for the mouse Fezf2 enhancer [34]).
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