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Additional file 2: Supplementary Figures 

 
Figure S1. Identification of conserved mid-embryonic stages during medaka embryogenesis by 
transcriptome similarity. The developmental stages close to stage 24 of the medaka embryogenesis 
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(highlighted in gray) were highly conserved across the examined vertebrate species. a–e All- to all-
stage comparisons of the transcriptome data of medaka embryos against zebrafish (a), western clawed 
frog (b), mouse (c), chicken (d), and softshell turtle (e) embryos are shown. The Spearman correlation 
coefficient was calculated by using FPKM values of orthologous genes to evaluate the transcriptomic 
similarity between samples. Lines were colored according to the developmental stages of each 
species. The number of orthologous genes used for comparing transcriptomes between species is 
shown at the top of each panel. For all line graphs, data are presented as mean ± 1 standard deviation 
of all pairs of biological replicates. f Conserved embryonic stages identified by 1:1 orthologue based 
method and by orthologue-group based method. The percentages of medaka developmental stages 
included in the most similar (lowest 1% of expDists) combinations of staged embryos from six 
vertebrates (mouse, chicken, softshell turtle, western clawed frog, zebrafish, and medaka) are shown 
as Ptop (see Methods for details). Higher Ptop values indicate developmental stages that are more highly 
conserved among the embryos of these vertebrates. expDist values were calculated to assess 
evolutionary conservation throughout the evolution of each of the six vertebrate species (see 
Additional file 3: Text S1 and Methods for details). To calculate expDists in the vertebrates, whole-
embryo expression levels of 6,038 1:1 orthologues and 28,752 orthologue groups in the embryos of 
the six vertebrates were used for 1:1 orthologue based method and for orthologue-group based 
method, respectively [7,8,94] (see Additional file 3: Text S1 and Methods for details). Error bars 
represent the standard deviations for Ptop values in 100 randomly selected biological replicates (BRI-
exp). Changes in the Ptop values of the developmental stages were statistically significant (Friedman 
test with 100 randomly selected BRI-exp for each species). Statistical information of the Friedman 
test is as follows: χ2 = 1455.6, df = 15, and P < 2.2 × 10–16 for 1:1 orthologue based method and χ2 = 
1409.5, df = 15, and P < 2.2 × 10–16 for orthologue-group based method. g Phylogenetic relationships 
of the six vertebrate species referenced in calculating expDists.  
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Figure S2. Genomic distribution of mouse, chicken, and medaka ACRs with respect to genome 
annotations. a Stacked bar graph shows the percentages of ACRs overlapping genomic regions with 
different annotations. ACRs in promoters were defined as those overlapping with regions between 2 
kb upstream and 1 kb downstream of all transcription start sites (TSSs) of protein-coding genes. 
Proximal ACRs are defined as those within 5 kb upstream and 1 kb downstream of TSSs. ACRs in 
exons were defined as those overlapping with exons of protein-coding genes but not overlapping with 
promoters. ACRs in introns were defined as those in gene bodies of protein-coding genes but not 
overlapping with either exons or promoters. Proximal ACRs were defined as those overlapping with 
regions between 5 kb upstream and 1 kb downstream of all TSSs but not overlapping with either 
promoters or gene bodies. Distal ACRs are defined as the others not overlapping gene bodies. b The 
percentages of ACRs overlapping with promoters (at any of the developmental stages) according to 
the distances from the annotated TSSs are shown. Note that the genomic distributions of ACRs shown 
here were similar to those in previous studies [26,27]. 
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Figure S3. Enhancers that drive wider expression tend to have higher ATAC-seq signals. 
Enrichments of whole-embryo ATAC-seq reads in E10.5 and E12.5 mice and in vivo enhancer 
activity (LacZ reporter assay) in E11.5 mice at representative enhancers (red regions) from the VISTA 
Enhancer Database [23]. Images of embryos from the VISTA Enhancer Database [23] are shown with 
the VISTA Enhancer ID and the flanking genes. Enrichment of ATAC-seq reads shown in each panel 
represents the mean value of the three biological replicates. Deep blue boxes indicate the identified 
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ACRs. Detailed information on the annotated enhancers from the VISTA Enhancer Database [23] is 
given in Additional file 1: Table S9.  
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Figure S4. Four different methods for estimating evolutionary ages of ACRs. a Different methods 
used for estimating evolutionary ages of ACRs (methods I–IV). These four methods differ regarding 
whether the ACRs consisting of multiple regions with different evolutionary origins are subdivided 
into separate ACRs, and in whether the secondarily lost ACRs are excluded (see Methods for details). 
b Genome browser excerpts showing representative ACRs (deep blue boxes), their evolutionary ages 
estimated by the different methods, and the enrichments of ATAC-seq reads (deep blue signals). 
Evolutionary ages of ACRs were estimated by the four different methods (methods I–IV; see Methods 
for details) with whole-genome pairwise alignments between the different chordate species and the 
reference genomes. Colored regions in the tracks of “Pairwise alignment” represent aligned sequences 
of the reference genome to the corresponding species genome. Colors of ACRs in the track of 
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“Estimated evolutionary ages” indicate the estimated evolutionary ages. Each category includes ACRs 
that have originated during the corresponding-colored period in the evolutionary trajectory shown in 
c. c The phylogenetic tree of the species used for pairwise alignment.   
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Figure S5. Categorization of evolutionary ages of ACRs and expressed protein-coding genes did not 
differ among different methods. In both cases of ACRs and expressed protein-coding genes, 
proportional distributions of their evolutionary ages were similar across the different methods (see 
also Figure 2). We also noted that almost all ACRs have been acquired since the origin of vertebrates, 
whereas most expressed protein-coding genes were acquired before that. Stacked bar graphs show the 
numbers of evolutionarily categorized ACRs and expressed protein-coding genes (FPKM > 1) at each 
developmental stage in mouse (a, b), chicken (c, d), and medaka (e, f). The evolutionary ages of 
ACRs were estimated based on Methods II–IV (see Methods and Additional file 2: Figure S4 for 
details). The evolutionary ages of protein-coding genes were estimated according to the most recent 
common ancestors of all the species sharing the similar sequences of the genes. In contrast to Figure 
2, the expressed genes that were estimated to be lost secondarily in any of the aligned species are 
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included here (see Methods for details). Colors in each stacked bar graph indicate the categories of the 
evolutionary ages of each element. Each evolutionary category includes ACRs or expressed protein-
coding genes that originated during the corresponding-colored period in the phylogenetic trees shown 
in g for mouse, h for chicken, and i for medaka.   
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Figure S6. The recapitulative pattern was also observed for relative sequence length of evolutionarily 
categorized ACRs within the genome. The overall recapitulative pattern was also apparent for the 
genomic fractions of ACRs as well as for the developmental chromatin accessibility shown in Figure 
3. The percentages corresponding to the summed length of evolutionarily categorized ACRs divided 
by the total length for all categories at developmental stages in three vertebrate species. The color of 
each category indicates the estimated evolutionary age of the region, as represented in the 
phylogenetic trees adjacent to the graphs. In each graph, the developmental stages with the highest 
value from the phylotypic period are highlighted in the corresponding color. Although the 
developmental stages with maximum chromatin accessibility of American alligator–turkey in the mid-
to-late chicken embryogenesis did not follow the recapitulative pattern, the overall recapitulative 
pattern was observed. 
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Figure S7. Developmental gene expression levels did not show a recapitulative pattern in the analysis 
including genes lost secondarily, related to Figure 4. The graphs presented were generated by using 
the same method as for Figure 4, except that the secondarily lost genes in any of the aligned species 
were included here (see Methods for details). In brief, the evolutionary age of each protein-coding 
gene was estimated according to the most recent common ancestors of all the species sharing the 
similar gene sequences. Statistical information of the Kruskal–Wallis rank sum test is given in 
Additional file 1: Tables S10. 
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Figure S8. The recapitulative pattern of whole-embryo chromatin accessibility was consistent 
between methods I, II, III, and IV, related to Figure 3. a–c The graphs presented were generated by 
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using the same method as for Figure 3, except for the method to estimate the evolutionary ages of 
ACRs. In short, method II included ACRs that were estimated to be lost secondarily in any of the 
aligned species (a), whereas methods III and IV did not subdivide ACRs (see Methods, Additional 
file 3: Text S2.1, and Additional file 2: Figure S4 for details). For each ACR, we determined the 
species with similar sequences of the ACR, and then estimated the evolutionary age based on the most 
recent common ancestors of all these species. Method III excluded ACRs that were estimated to be 
lost secondarily in any of the aligned species (b), whereas method IV did not exclude these ACRs (c). 
Statistical information of the Kruskal–Wallis rank sum test is given in Additional file 1: Tables S11–
13. 
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Figure S9. Essentially the same recapitulative pattern was observed in the analysis using different 
sets of species. The graphs were generated by using the same method as for Figure 3, except with 
different sets of genomes (see Additional file 3: Text S2.2 for details). Statistical information of the 
Kruskal–Wallis rank sum test is given in Additional file 1: Table S14. 
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Figure S10. Essentially the same recapitulative pattern was observed for the analyses with different 
criteria in filtering ATAC-seq reads. The graphs were generated by using the same method as for 
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Figure 3, except that uniquely hit ATAC-seq reads were used (a; see Methods and Additional file 3: 
Text S2.3 for details), ATAC-seq reads aligned to the mitochondrial genome were removed (b; see 
Methods and Additional file 3: Text S2.4 for details), or aligned read depth was not normalized (c; see 
Methods and Additional file 3: Text S2.5 for details), respectively. Statistical information of the 
Kruskal–Wallis rank sum test is given in Additional file 1: Tables S15–17. 
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Figure S11. Chromatin accessibility of mouse early stages did not show the recapitulative pattern. 
Publicly available ATAC-seq data [28] of mouse preimplantation embryos (early two-cell stage, two-
cell stage, four-cell stage, and eight-cell stage; see Methods for details) were used to test the 
recapitulative tendency in early mouse stages. The same method used for Figure 3 was applied for this 
analysis, except that ATAC-seq reads aligned to the mitochondrial genome were removed and aligned 
read depth was not normalized (see Methods for details). Statistical information of the Kruskal–Wallis 
rank sum test is given in Additional file 1: Table S18. 
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Figure S12. Exonic ACRs did not follow a recapitulative pattern. Relative ATAC-seq signals of 
exonic ACRs (a), non-exonic ACRs overlapping promoters (b), and non-exonic ACRs outside of 
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promoters (c) are shown. Note that relative ATAC-seq signals of non-exonic ACRs tended to show 
the recapitulative pattern. Statistical information of the Kruskal–Wallis rank sum test is given in 
Additional file 1: Tables S19–21. 
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Figure S13. Similar recapitulative pattern observed for the chromatin accessibility under strong 
negative selection. The percentages corresponding to the summed signal intensity of regions under 
strong negative selection within ACRs (defined by phastCons [30]) for each evolutionary category 
divided by the total signal intensity for all ACRs in all categories at each developmental stage. Note 
that there is no graph for the evolutionary category of the newest ACRs, as the regions under the 
negative selection detected by phastCons are required to be aligned against one or more other species’ 
genome(s), and species-specific ones are not included. Statistical information of the Kruskal–Wallis 
rank sum test is in Additional file 1: Table S22. 
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Figure S14. No ACR could be detected at three of five representative regulatory regions associated 
with taxon-specific features. These regulatory elements are known to be involved in the development 
of taxon-specific morphological features [20,31-34]. The mean ATAC-seq read enrichments of the 
three biological replicates (deep blue signals) and ACRs (deep blue boxes) at the five regulatory 
regions are shown. The two mouse enhancer regions overlapped identified ACRs, whereas no ACR 
could be detected at the remaining three enhancer regions by whole-embryo ATAC-seq analysis. This 
is consistent with previous studies showing that these enhancer activities were observed in a limited 
part of developing embryos (the frontonasal region for the mouse Wnt5a enhancer [31]; the posterior 
margin of the forelimb for the chicken Sim1 enhancer [20]; the posterior regions of the pectoral fin 
buds for the medaka shh enhancer [32]). On the other hand, ACRs were detected at the Satb2 and 
Fezf2 enhancer regions in mouse embryos, possibly because these enhancer regions were accessible in 
a sufficient number of cells to be detected by whole-embryo ATAC-seq analysis (the deep layer of the 
neocortex for the mouse Satb2 enhancer [33]; the neocortex for the mouse Fezf2 enhancer [34]). 
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