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Supplementary Methods

Sample Processing
Isolation of Whole Blood: Venous blood was collected by simple venipuncture under aseptic conditions. 
Purification of DNA: Genomic DNA was isolated from whole blood using the MagAttract DNA Mini M48 Kit on the automated BioRobot M48 workstation (Qiagen).
Bisulfite Treatment: Isolated DNA was bisulfite converted using the EZ DNA Methylation Gold kit (Zymo, Irvine, CA).  The product of this process contains cytosine converted to uracil if it was previously unmethylated.
Genomic DNA Amplification: The bisulfite treated DNA was subjected to whole genome amplification (WGA) via random hexamer priming and Phi29 DNA polymerase, and the amplification products were then enzymatically fragmented (1), purified from dNTPs, primers, and enzymes, and applied to the Illumina chip (2).
Hybridization and Single-base Extension: The bisulfite converted amplified DNA products were denatured into single strands and hybridized to the Infinium HumanMethylation450 BeadChip via allele specific annealing to either the methylation specific probe or the non-methylation probe. The Infinium HumanMethylation450 BeadChip contains more than 485,000 methylation sites per sample at single-nucleotide resolution. It covers 99% of RefSeq genes, with an average of 17 CpG sites per gene region distributed across the promoter, 5'UTR, first exon, gene body, and 3'UTR. It covers 96% of known CpG islands as well as many CpG sites outside of CpG islands.  Hybridization to the chip was followed by single base extension with labeled di-deoxynucleotides. 
Fluorescence Staining and Scanning of Chip: The hybridized Beadchip was stained, washed, and scanned to show the intensities of the un-methylated and methylated bead types using Illumina’s Iscan System. The raw data was analyzed by the scanner software (Genome Studio), and the fluorescence intensity ratios between the two bead types were calculated, referred to as Beta values. A Beta value of 0 is equivalent  to non-methylation of the locus; a value of 1 equals to total methylation; a value of 0.5 means that on average one of the two chromosomal copies was methylated and the other was not (1). Logit transformed beta values, called M values, are shown to perform much better in terms of Detection Rate (DR) and True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites (3). Hence, M values were used for all our statistical modeling and analysis.

Measurements of AD severity:

EASI is a standardized grading system (range of score, 0-72) that assesses erythema, excoriation, lichenification, infiltration and/or population (4). The Rajka-Langeland score (RLS) rates extent, course, and itch intensity separately and yields a score from 0-9 (5). The RLS system provides a broad and somewhat historical view of a subject's AD severity, whereas the EASI provides a more sensitive measure of disease severity at the time of enrollment. Both EASI and RLS are available for AD patients only and are not measured in controls. For all study participants, blood samples were sent to Quest Diagnostics Laboratory for a complete blood count (CBC) with differential and to the Dermatology, Allergy and Clinical Immunology Laboratory (DACI) at Johns Hopkins Asthma and Allergy Center, for total serum IgE (tIgE) levels. Using the UniCap 250 system (Pharmacia and Upjohn), the DACI laboratory performed the tIgE (kU/L) tests on serum samples from all ADEH+ and ADEH- subjects.


Quality Control and preprocessing:

Discovery data set:
A total of 39 samples (15 Controls, 15 ADEH- and 9 ADEH+ samples) were removed from further analysis as a result of either low methylated/unmethylated median values (Supplementary Figure S1) (12 controls, 14 ADEH- and 7 ADEH+ samples) or due to gender mismatches (4 controls: 1 also failed QC, 1 ADEH- and 2 ADEH+ samples) between the phenotype annotations and the calls generated by the ‘minfi’ getSex function (Supplementary Figure S2). Three samples (2 Controls and 1 ADEH+ sample) were excluded from the study as they did not meet the requirement of “Non-Hispanic” and were ineligible per the protocol requirements. One of the three samples (Control) was also a QC failure so there were 41 samples excluded. Samples were run in seven batches and excluding 41 samples left the last batch with just two samples (ADEH-). In order to balance the samples within batches on their phenotype, these two samples were also excluded.

Replication data set:
Of the 168 samples run, there was one sample that failed the initial experimental QC. 167 samples were run through the QC pipeline. Including that sample, a total of 6 samples (1 Control, 3 ADEH- and 2 ADEH+ samples) were removed from further analysis as a result of either technical issues while performing the assay or low methylated/unmethylated median values (Supplementary Figure S1) (1 Control, 1 ADEH- and 1 ADEH+ samples) or due to gender mismatches (2 ADEH-: 1 also failed QC and 2 ADEH+ samples) between the phenotype annotations and the calls generated by the minfi getSex function (Supplementary Figure S2). There were 19 samples that were inadvertently included in discovery and replication data sets. These 18 samples (ADEH+) were excluded (1 was a QC failure) from the analysis.

Results:
Estimation of cell-type composition and assessment of model calibration
Boxplots of estimated cell fractions of each of seven cell types (CD4T, CD8T, monocytes, eosinophils, neutrophils, natural killer cells and B-cells) for individuals split by phenotype group are shown in main text Figure 4. Some significant or suggestive differences were observed between groups (CD8T cells: ADEH+ vs controls p=0.03, NK cells: ADEH- vs controls p=0.002, ADEH- vs ADEH+ p=0.04, Monocytes: ADEH+ vs controls p=0.018, eosinophils: ADEH- vs controls p=0.002, ADEH+ vs controls p=2.98e-05, two-sample t-test; all other p-values > 0.05).; however, estimated cell fractions were included in all further models to ensure removal of confounding effects for these cell types. In addition to these seven components, additional modeling was performed combining neutrophils and eosinophils into granulocytes. Few significant or suggestive differences were observed between groups (natural killer cells: ADEH+ vs controls p=0.0008, ADEH- vs ADEH+ p=0.025, B-cells: ADEH- vs ADEH+ p=0.051, two-sample t-test; all other p-values > 0.05) 
[bookmark: _GoBack]To assess model calibration, quantile-quantile plots were made pre- and post-distributional adjustment with bacon for the three phenotype comparisons and also severity analysis (Supplementary Figures S3 and S4), with post-adjustment results showing little evidence of overall test-statistic inflation (inflation factor lambda ADEH- vs healthy controls: 1.012, ADEH+ vs healthy controls: 1.014, ADEH- vs ADEH+: 1.017). 

Data analysis
Cell Type Distribution
Significant heterogeneity among different cell types as found in blood (either whole or in PBMC fractions) has been conclusively demonstrated to confound differential methylation studies where apparent changes in methylation status may result more from changes in cell type distributions than from methylation level changes within a particular cell type (6).  In order to test and control for this possibility, a function in the minfi R-package which incorporates the method of Jaffe and Irizarry (6) to predict blood cell count distributions was used.  Purified (flow sorted) subsets from granulocytes, lymphocytes, and monocytes were used to identify a subset of cell-type specific CpGs which can be used to accurately predict cell type distributions in Illumina 450K methylation samples.  This method as invoked by the estimateCellCount function in minfi (7) is a useful and significant advance on previous population-based methods (8). Cell type distribution was estimated by first generating the cell type coefficients (i.e. proportions) for each sample in the dataset. The function estimateCellCount provides estimated fractions for up to seven cell types: CD4T, CD8T, eosinophils, neutrophils, B-cells, natural killer cells and monocytes. These are the seven components we included in our initial models, following common practice. In addition, a combined granulocyte signal composed of eosinophil and neutrophil components can be estimated. We used these estimates in later analyses. Since cell estimates could not be extracted for the EPIC data set using older versions of minfi, minfi 1.20.2 was used only to extract the cell estimates for replication data set.

Batch adjustment 
The missMethyl package was developed specifically for analysis of 450K data and offers an implementation of RUV-inverse (9) called RUVm (10) as a solution for removing batch effects and unknown, unwanted variation from the data. This unwanted variation may be due to processing batches or other unmeasured confounders, such as temperature or humidity on the day that samples were processed together. To accurately estimate the components of unwanted variation, the two-stage RUVm method relies on negative control probes that are assumed not to be associated with the biological factor of interest. First, a differential methylation analysis using the 613 Illumina negative control probes with RUV-inverse is performed. Based on results from this first analysis, empirical controls, which are not associated with the outcome of interest in the first round of modeling, are identified. The empirical controls are then used by RUV-inverse in the second stage of analysis.
The RUVfit function runs this method and takes as input a matrix of M-values, a design matrix, the coefficient to be tested and a vector indicating the initial negative control probes. The RUVadj function adjusts the variance estimates using empirical Bayes shrinkage (probably unnecessary here due to large sample sizes) and the topRUV function is used to extract the top significantly differentially methylated CpG sites, after adjusting for the unwanted variation.

Detection of differentially methylated positions (DMPs) by group
We fit a linear model on the M-value scale. Covariates included age, sex and batch, as well as estimates of seven cell-type fractions (to control for potential confounding by outcome associated cell-types such as eosinophils) and batch effect factors (estimated by RUVm). More specifically our model was of the form:
DNAm(M-value) ~ β0+β1(Predictor of interest)+β2(Sex)+β3(Age)+β4(CD8T)+β5(CD4T)+β6(NK)+β7(B cell)+β8(monocytes)+β9(eosinophils) +β10(neutrophils)+
where the term  includes factors estimated to control for batch effects. 
The predictor of interest was an indicator of group membership (Control, ADEH- or ADEH+) for each pair-wise comparison of groups. Analyses were performed using multiple testing correction at both a genome-wide level and a candidate gene level, using a set of 129 CpG’s that mapped to a set of genes previously shown to be of interest in EH, specifically FLG, LCE1B, RPTN, IL4, IL13 and its receptors, IFNs and TSLP.
Detection of differentially methylated positions (DMPs) by group without eosinophil adjustment
We fit a linear model on the M-value scale. Covariates included age, sex and batch, as well as estimates of six cell-type fractions (with eosinophils and neutrophils represented by the granulocyte estimate) and batch effect factors (estimated by RUVm). More specifically our model was of the form:
DNAm(M-value) ~ β0+β1(Predictor of interest)+β2(Sex)+β3(Age)+β4(CD8T)+β5(CD4T)+β6(NK)+β7(B cell)+β8(monocytes)+β9(granulocytes) +
where the term  includes factors estimated to control for batch effects. The predictor of interest was an indicator of group membership (Control, ADEH- or ADEH+) for each pair-wise comparison of groups. Analyses were performed using multiple testing correction at a genome-wide level.

Detection of differentially methylated positions by severity
We fit a linear model on the M-value scale. Covariates included age, sex and batch, as well as estimates of six cell-type fractions (with eosinophils and neutrophils represented by the granulocyte estimate) and batch effect factors (estimated by RUVm). More specifically our model was of the form:
DNAm(M-value) ~ β0+β1(Predictor of interest)+β2(Sex)+β3(Age)+β4(CD8T)+β5(CD4T)+β6(NK)+β7(B cell)+β8(monocytes)+β9(granulocytes) +
where the term  includes factors estimated to control for batch effects. Two analyses were performed using severity phenotypes: (1) relationship of tIgE levels to methylation in 26 CpGs in the IL4, IL13 and IL4R genes to test a specific hypothesis of the role of these genes on tIgE; and (2) relationship of four AD severity measures, including eosinophil counts, total serum IgE (tIgE) levels, EASI score and Rajka-Langeland score to methylation at the subset of CpGs significant from the group-wise genome-wide comparison with six cell types (without adjustment for eosinophil fractions).
P-value distribution adjustment and multiple testing correction
A conventional GWAS analysis uses QQ plots as a standard to examine the distribution of P values with a target lambda of 1 being an indicator of proper Type-I error control. It has been argued that this approach is not appropriate in the context of a methylation or expression analysis (11), and a recent paper (11) presents a method for controlling bias and inflation that is specific to EWAS. This method is implemented in the Bioconductor package called bacon.
The results obtained from the missMethyl package are then adjusted using bacon, to remove inflation and bias often observed in epigenome- and transcriptome-wide association studies. To this end, bacon constructs an empirical null distribution using a Gibbs Sampling algorithm by fitting a three-component normal mixture on z-scores (11). P-values output from bacon are then FDR-adjusted to account for the number of tests in the specific analysis being performed using the function p.adjust.
Gene-ontology (GO) enrichment analysis
Gene-ontology enrichment analysis was performed with the gometh function in missMethyl, which is designed specifically to address potential biases in measuring gene-set enrichment with the 450K methylation array (12), where probes are not evenly spaced with respect to genes of different types. This method is an adaptation of the goseq method of Young et al. (13), which uses a hypergeometric test to assess enrichment of genes in a particular ontology category among genes closest to significant DMR results. In this adaptation, each gene has a prior probability associated with it based on the number of probes on the array in proximity to the gene.










Supplementary Figure S1. Quality control (QC) plot of methylated to unmethylated median intensities for discovery and replication data sets. 
Colors indicate processing batch membership.


 
Discovery data set 					Replication data set




Supplementary Figure S2. Plot of chrX vs chrY median intensities to identify gender mismatches for discovery and replication data sets. Colors indicate sample processing batch. Shapes indicate sex from sample data file.
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Supplementary Figure S3. QQ plots of p-values from DMP analysis across three phenotype groups (adjusted for age, sex, batch and cell types (7 cell types top 2 rows, 6 for bottom two rows)) prior to and post bacon adjustment.
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Supplementary Figure S4: QQ plots for p-values from DMP analysis for severity phenotypes (adjusted for age, sex, batch and cell types (7 cell types top row, 6 for bottom row, rows paired by phenotype)) prior and post bacon adjustment.
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Supplementary Figure S5: Boxplots for the top 27 CpG’s significant in ADEH+ Vs controls analysis from model with six cell types adjusted for.
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Supplementary Figure S6. Scatter plots of top 27 CpGs significant in eosinophil-methylation analysis showing eosinophil levels against methylation values.
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Supplementary Table S1. Clinical Characteristics table for all samples in discovery and replication data sets


	Discovery data set (N=297)
	 
	Replication data set (N=167)

	Trait
	ADEH+
	ADEH-
	Non-atopic controls
	 
	ADEH+
	ADEH-
	Non-atopic controls

	N
	99
	100
	98
	 
	56
	55
	56

	Males (N; %)
	45 (45.5%)
	36 (36%)
	40 (40.8%)
	 
	32 (57.1%)
	30 (54.5%)
	19 (33.9%)

	Age (in years) mean; SD
	28.9; 20.7
	34.4;14
	33.2;11.2
	 
	22.1; 20.9
	24.5; 18.0
	39.7; 15.7

	Total IgE (kU/L)
	1162.9
	267.5
	23.7
	 
	1264.1
	217.4
	10.8

	(95% CI) Φ
	(777.4-1739.5)
	(168.5-424.5)
	(18.2-30.9)
	 
	(767.7-2081.5)
	(113.7-415.8)
	(8.4-13.8)

	
	
	
	
	 
	
	
	

	Eosinophils (cells/mm3)
	368.7
	266.1
	128.7
	 
	370.9
	269.1
	89.3

	(95% CI) Φ
	(310.5-437.8)
	(226.6-312.4)
	(113.8-145.7)
	 
	(298.0-461.7)
	(208.8-346.7)
	(73.0-109.4)

	EASI; mean 
	12.3
	10
	(-)
	 
	15.2
	14.5
	(-)

	(range)
	(0-52.4)
	(0-66.6)
	
	 
	(0.9-55.0)
	(0.3-47.2)
	

	Rajka-Langeland mean(SD)
	6.8(1.5)
	6(1.6)
	(-)
	 
	7.0 (1.4)
	6.9 (1.5)
	(-)

	
	
	
	
	 
	
	
	

	ΦGeometric mean
	 
	 
	 
	 
	 
	 
	 



Supplementary Table S10. References to support the selection of genes for our gene based analysis
	Gene
	References

	FLG
	(14-19)

	LCE1B
	(19, 20)

	RPTN
	(20, 21)

	IL4
	(16, 19, 22-25)

	IL13
	(16, 19, 22-25)

	IFN
	(26-28)

	TSLP
	(16, 19, 22, 29, 30)
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