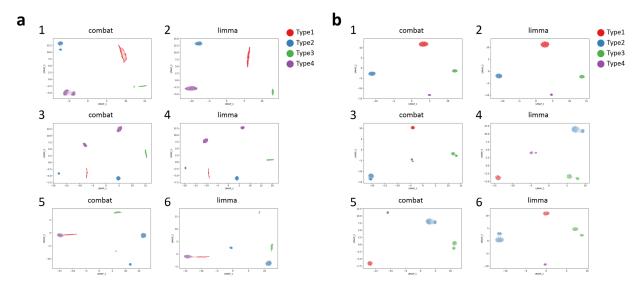

Supplementary information of


BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing

batch correction reveals hidden high-resolution cellular subtypes



Supplementary figures

Figure S1. Removing batch effects in simulated data generated by 2-dimensional Gaussian distribution. Visualizations of results for simulated data generated by 2-dimensional Gaussian distribution. Results of our method are visualized by the 2-dimensional code in the trained autoencoder, while results of other methods are visualized using UMAP. BERMUDA _0.85 and BERMUDA _0.90 represent our method with $S_{thr} = 0.85$ and 0.90 respectively. a. Results of *Experiment all*. b. Results of *Experiment removal1*.

Figure S2. Removing batch effects in simulated data generated by Splatter. a. UMAP visualizations of results for *Experiment all* colored by cell types. b. UMAP visualizations of results for *Experiment removal1* colored by cell types. c. UMAP visualizations of results for *Experiment removal2* colored by batches. d. Evaluation of batch correction performance on Splatter dataset using the proposed metrics. The *silhouette_score* axis is reversed so that points close to the bottom-left corner indicate better results. c1. *Experiment all*. c2-4. *Experiment removal1*. c5-7. *Experiment removal2*.

Figure S3. *Combat* and *limma* fail to correctly remove batch effects in simulated datasets. *Combat* and *limma* could not remove batch effects in scRNA-seq data correctly when not all cellular states were shared by all the batches (*Experiment removal1* and *Experiment removal2*). a. UMAP visualizations of batch correction results for simulated data generated by 2-dimensional Gaussian distribution. a1-2. *Experiment all.* a3-4. *Experiment removal1*. a5-6. *Experiment removal2*. b. UMAP visualizations of batch correction results for simulated data generated by Splatter. b1-2. *Experiment all.* b3-4. *Experiment removal1*. b5-6. *Experiment removal2*.

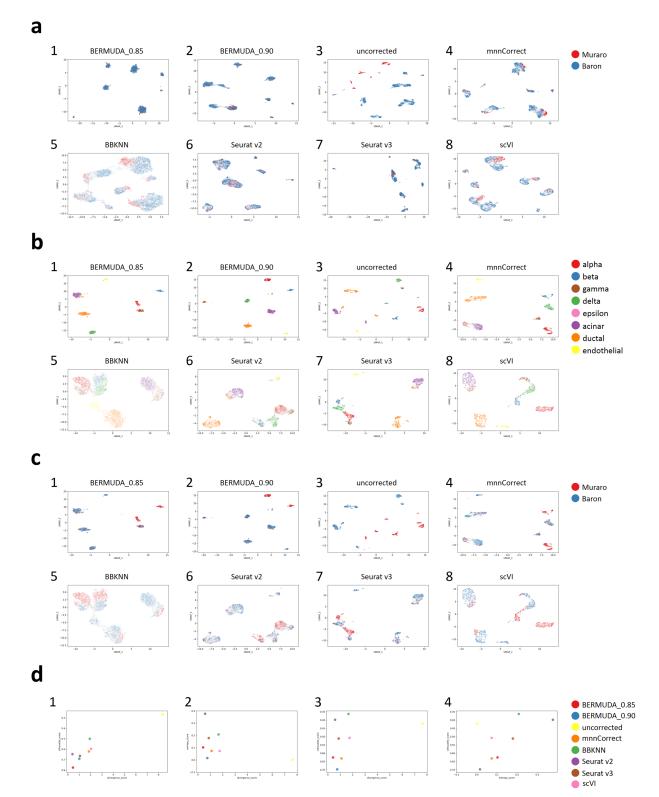
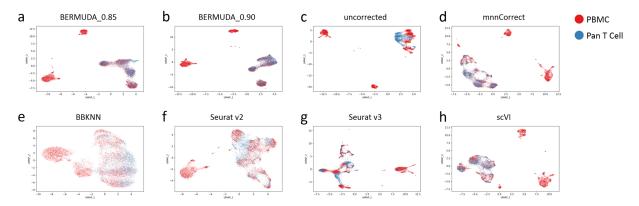
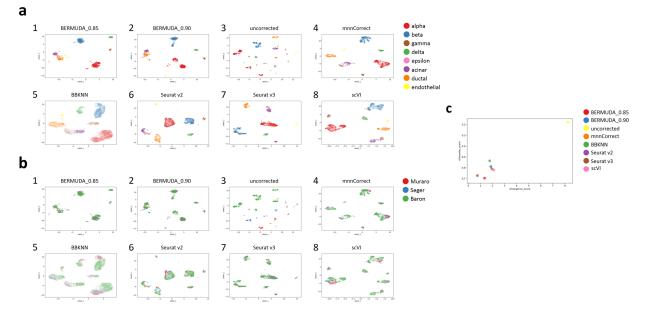




Figure S4. Removing batch effects in scRNA-seq data of pancreas cells with *Muraro batch* and *Baron batch*. a. UMAP visualizations of results for *Experiment all* colored by batches. b. UMAP visualizations of results for *Experiment removal* colored by cell types. c. UMAP visualizations of results in

Experiment removal colored by batches. d. Evaluation of batch correction performance on *Experiment removal* using the proposed metrics. The *silhouette_score* axis is reversed so that points close to the bottom-left corner indicate better results. d1. *Experiment all*. d2-4. *Experiment removal*.

Figure S5. Removing batch effects in scRNA-seq data of PBMCs. UMAP visualizations of results on PBMC dataset colored by batches. Our method correctly merged T cells from the both batches, while preserved the structures of cell clusters specific to the *PBMC batch*.

Figure S6. Removing batch effects in scRNA-seq data of pancreas cells with multiple batches. All the cells from *Muraro batch, Baron batch,* and *Segerstolpe batch* were used for analysis. a. UMAP visualizations of results for *Experiment all* colored by cell types. b. UMAP visualizations of results for *Experiment all* colored by batches. c. Evaluation of batch correction performance on *Experiment all* using the proposed metrics.

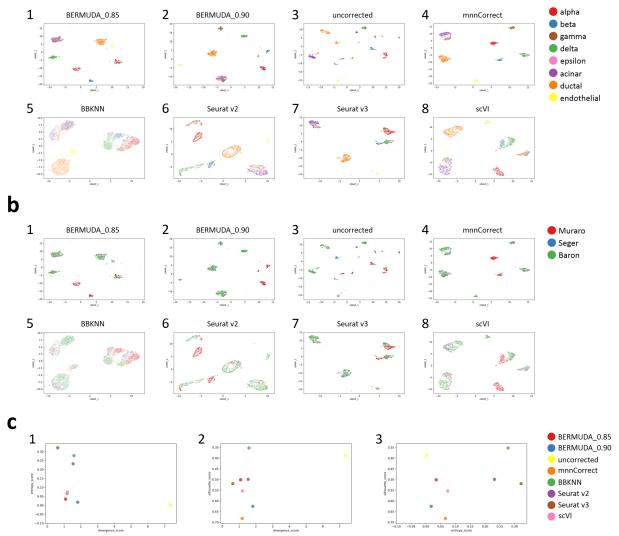


Figure S7. Removing batch effects in scRNA-seq data of pancreas cells with multiple batches of different cell population compositions. Alpha and beta cells from *Baron batch* and *Segerstolpe batch* were removed from analysis. a. UMAP visualizations of results for *Experiment removal* colored by cell types. b. UMAP visualization of results for *Experiment removal* colored by batches. c. Evaluation of batch correction performance on *Experiment removal* using the proposed metrics.

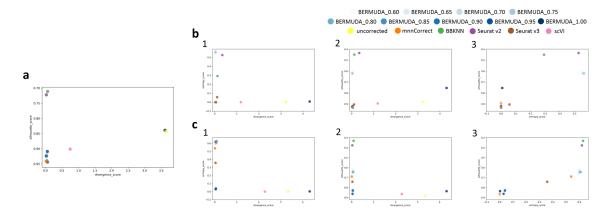


Figure S8. Results of Splatter dataset using different S_{thr} values evaluated by proposed metrics. a. *Experiment all.* b. *Experiment removal1*. c. *Experiment removal2*. The most important parameter in our method is S_{thr} , which is the threshold applied on the cluster similarity score to identify similar clusters across different batches. S_{thr} can affect the results of batch correction, where a lower S_{thr} value can produce a more homogeneous mixture of different batches within cell types and a higher S_{thr} value can help to retain more batch-specific biological signals. We experimentally demonstrate our choice of S_{thr} by evaluating the performance of our method using S_{thr} ranges from 0.60 to 1.00. Our method consistently outperformed the existing methods on the Splatter dataset when choosing S_{thr} between 0.85 and 0.90. More specifically, when all the cell types were shared in different batches, generally $S_{thr} \leq 0.9$ produced competitive results, since we did not need to consider the case where different cell types might be mixed together by using a low threshold. However, when we introduced large differences in cell population compositions by removing cell types from specific batches, we observed that S_{thr} between 0.85 and 0.90 as a default parameter choice for *BERMUDA*.

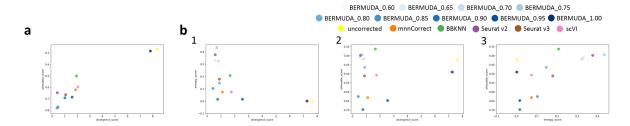
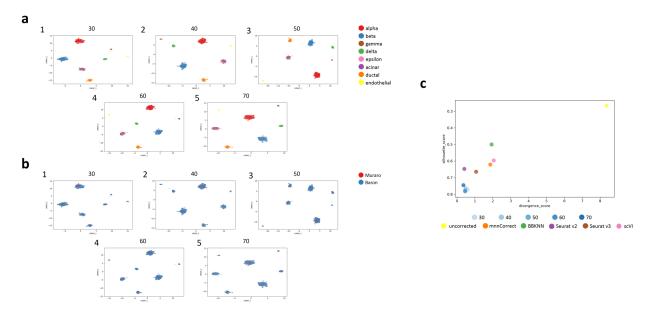



Figure S9. Results of pancreas dataset with *Muraro batch* and *Baron batch* using different S_{thr} values evaluated by proposed metrics. a. *Experiment all.* b. *Experiment removal*. Our method consistently outperformed existing methods on the pancreas dataset when choosing S_{thr} between 0.85 and 0.90.

Figure S10. *BERMUDA* is robust to the number of cells sampled from each cluster in a mini-batch. The number of cells sampled from each cluster in a mini-batch, n_{mb} , is a hyperparameter in *BERMUDA*. We experimentally demonstrate that *BERMUDA* is robust to the choice of n_{mb} by evaluating the performance of *BERMUDA* using n_{mb} ranges from 30 to 70. The results were generated by performing *Experiment all* to combine *Muraro batch* and *Baron batch* in the pancreas dataset with $S_{thr} = 0.85$. We observed that the performance of *BERMUDA* was insensitive to the choice of n_{mb} and *BERMUDA* consistently outperformed existing methods under a wide range of n_{mb} values. a. UMAP visualizations of results colored by cell types. The number above each figure represents the value of n_{mb} used for training *BERMUDA*. b. UMAP visualizations of results colored by batches. c. Evaluation of batch correction performance using the proposed metrics.

Supplementary tables

Gene Symbol	Adjusted p-value (Muraro vs. Baron)	Adjusted p-value (Baron vs. Baron)
PCSK1N	0.00E+00	7.97E-55
FAP	0.00E+00	6.04E-76
G6PC2	7.31E-290	3.54E-168
SLC30A8	5.80E-281	2.75E-162
SLC38A4	1.53E-277	7.67E-51
ARRDC4	5.64E-249	1.88E-60
ABCC8	6.70E-241	2.05E-130
TM4SF4	1.06E-173	8.14E-221
CRYBA2	1.00E-169	1.86E-202
MAFB	1.42E-158	4.16E-109
ARX	1.09E-145	3.21E-60
TXNIP	4.58E-104	6.57E-122
INSIG1	9.34E-95	9.48E-53
FXYD6	1.41E-93	6.77E-119
XIST	6.48E-85	1.19E-169
SERPINA1	1.62E-76	3.09E-52
S100A11	7.41E-74	7.02E-87
TNFRSF12A	1.38E-69	6.32E-94
ANXA2	1.06E-64	1.45E-111

Table S1. List of differently expressed genes within alpha cells in the pancreas dataset.

Only genes with adjusted p-value $\leq 10^{-50}$ in both tests are reported. The bold genes are discussed in detail in the paper.

Gene Symbol	Adjusted p-value (Muraro vs. Baron)	Adjusted p-value (Baron vs. Baron)
SYT13	6.98E-194	2.14E-84
SLC30A8	1.34E-179	2.47E-223
ABCC8	2.05E-170	1.95E-162
G6PC2	3.16E-162	5.89E-155
INS	3.93E-160	5.62E-83
PDX1	1.35E-151	8.21E-51
MAFB	1.06E-150	6.35E-95
MAFA	9.22E-135	2.77E-54
PLCXD3	7.72E-126	1.97E-62
PCSK1	1.90E-97	7.74E-96
WNT4	1.11E-81	1.27E-61
TIMP2	4.85E-80	1.90E-61
EDN3	5.89E-62	4.68E-92

Table S2. List of differently expressed genes within beta cells in the pancreas dataset.

Only genes with adjusted p-value $\leq 10^{-50}$ in both tests are reported. The bold genes are discussed in detail in the paper.

Method	Running time(s)
BERMUDA ($S_{thr} = 0.85$)	285.91
BERMUDA ($S_{thr} = 0.90$)	262.98
mnnCorrect	35.90
BBKNN	5.02
Seurat v2	338.33
Seurat v3	75.27
scVI	360.33

Table S3. Running time of different methods in the pancreas dataset.

The running time was measured by performing *Experiment all* on *Muraro batch* and *Baron batch*. Since we expect *BERMUDA* to be adopted by biologists who may not always have easy access to high-end computing facilities, and some of the methods compared do not have a GPU implementation, we evaluated the running time on a desktop computer with a CPU (2.7 GHz Intel Core i5) for fair comparison.