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Fig. S1. Reference component analysis (RCA) clustering of in-house single cell data from
HT29 and SW480 colorectal cancer cell lines. In order to confirm that our pipeline could
distinguish between cell lines, we mixed different colorectal cancer cell lines before loading on
the cell array and proceeded according to the previously described single-cell RNA sequencing
protocol. We found that we could distinguish between HT29 and SW480, and identify a SW620-
like sub-cluster within the SW480 cell population using our pipeline. Both SW480 and SW620
cell lines come from the same patient. We identified three main clusters denoted by the brown,
blue, and turquoise colors. The colors of the heatmap, from light blue to dark red, denote the
level of similarity towards the reference, where blue means no similarity and dark red means
high similarity.
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Fig. S2. Gene transcript distribution over individual colorectal cancer cells. Distribution of
number of unique transcripts (y-axis) per individual cell (x-axis). Red line shows the selected
cutoff point. To select the top quality cells, a threshold around the elbow in which cells increase
drastically the number of (unique) transcripts was chosen. To ensure the good quality of the cells
as well as the coverage of genes, those cells more than 4,000 unique transcripts were selected
for downstream analysis.
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Fig. S3. Multicellular Disease Models (MCDMs) from tumor- and adjacent healthy tissues
from patients with colorectal cancer (CRC). (A) An MCDM for CRC tumor was constructed,
based on connecting differentially expressed genes in each cell type with predicted upstream
regulators in all other cell types. Gene names of predicted upstream regulators are indicated on
arrows. Cell size corresponds to the number of differentially expressed genes in logarithmic
scale. NK = Natural Killer cells, Treg = T regulatory cells. (B) Multicellular model from adjacent
healthy tissue from CRC patients.
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Fig. S4. GWAS diseases distribution over ICD-10-CM chapters. (A) Frequency distribution
of the analyzed GWAS diseases across 21 ICD-10-CM chapters. (B) Cumulative frequency of
diseases across chapters.
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Fig. S5. Relationship between number of interactors of each cell type and the number of
associated diseases (CellComp). Correlation between the numbers of interactors and number
of associated genes among the cells (Pearson p = 0.31, p = 0.038). The top bars show the
distribution of the degree distribution (number of interactions for each cell). The side bars show
the distribution of number of diseases associated with the cells.
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Fig. S6. Cluster diagram showing the associations of 175
diseases with 45 cell types. Relationship between cell type and
disease based on epigenetic markers and GWAS data for each cell
type and disease respectively. The heatmap shows -1og10 of the p
value for each disease — cell type pair. Hierarchical clustering was
performed on these values using the cosine distance over each row
pair and column pair.
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Fig. S7. Canonical pathways across 175 diseases. Ingenuity pathway analysis of GWAS

genes belonging to all 175 diseases. The Thl and Th2 activation pathway was most significant.
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Fig. S8. Principal Component Analysis of 166 microarrays (127 patients and 39 healthy
controls). (A) Variance distribution over the principal components. First two principal
components with data points colored according to subject’s sex. (B), and age (C). For the age
confounding test, patients were grouped into categories of <20, 20-30, 3040, 40-50, 50-60,
60-70, and >70 years of age.
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Fig. S9. Predicted percentage from CIBERSORT showed high overlap of T cell composition
between different age groups and sexes of patients and controls. (A) Box plots of cellular
composition in different healthy age groups (darker green means greater age), (B) healthy sex
and age groups, and (C) across the 13 different diseases, and controls. Boxes correspond to
quartiles, median is marked within the boxes, whiskers are marked with dashed lines, and outliers

are marked with ‘+’ signs.
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Fig. S10. Bezafibrate protects against antigen-induced arthritis and inhibits antigen-
induced CDA4+ helper T cell proliferation. Female mice sensitized with mBSA (on days one
and seven) were subjected to arthritis via intra-articu-lar injection (day 21) of mBSA and they
were mock-treated or subcutaneously (s.c.) treated with bezaf-ibrate at sensitization (8 mg/kg),
intraperitoneally (i.p.) on days 21, 24, and 26 (4 mg/kg), or intra-artic-ularly (i.a.) on day 21
(0.6 mg/ kg). (A) Representative joint images from s.c. and i.a. treatment groups (B) Arthritis
severity assessed by histopathology day 28. (vertical bars indicate median, differences be-
tween groups evaluated using the Mann-Whitney U-test, *p < 0.05); (C) Antigen recall
response of CD4+ helper T cells among spleen and lymph node cells isolated from mock-
treated mice (AIA con-trol, n = 5), mice treated with bezafibrate at sensitization (AlA+Bez at
sensitization, n = 6), and mice treated with bezafibrate i.p. day 21, 24, and 26 (AlIA+Bez i.p in
arthritis phase) (n = 4); vertical bars indicate mean + SEM, differences between groups
evaluated using the Mann-Whitney U-test, *p < 0.05). For comparison, cell proliferation in a
non-immunized (naive) mice is shown in (C).
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Fig. S11. Gating strategy. For the proliferation analysis, lymphocytes were gated on the
basis of the forward and side scatter as shown in A. CFSE stained cells were selected from
the gated lymphocytes (B) and further gated on CD4+ cells (C) before analysis of

proliferation (D).
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Fig. S12. Cell capture per mouse and condition (t-SNE plots). (A) t-SNE plot of 1333
healthy and RA lymph nodes cells divided by four healthy mice (H1 to H4) and five RA mice
samples (RA1,3 to RAG), colored by RCA clusters, and (B) 7086 healthy and RA joint cells
divided by four healthy mice (H1 to H4) and five RA mice samples (RA1,3 to RAG6). Mouse
number 2 had arthritis score of 0.5 (not clearly sick not healthy either) and therefore has been
removed from the analyses.
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Fig. S13. Mean expression of top cell type specific marker genes for SSRNA-seq of cells
in joint and lymph node. Heatmap representation of the average expression per cell type of
the top 20 most variable genes for RA joint cells (left, n = 7086), and for healthy and AIA
lymph node cells (right, n = 1333). We over-lapped the genes from our sScCRNA-seq data from
whole arthritic joints and local lymph nodes with the RCA reference set. For each tissue, we
identified the top 100 most present genes, from which we se-lected the top 20 most variable

genes.
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Fig. S14. Comparison of cell type specific pathways from the mouse and human
rheumatoid arthritis model. Overlap of rheumatoid arthritis pathways between human and
mouse. Mouse pathways (white) and human pathways (grey) were compared for all cell types
for which data on both species was available. Statistically, overlap was analyzed with the
Fisher exact test (onesided), using the total number of pathways defined in IPA (n = 662) as

a background.




