Additional file 1

Journal name: AMB Express

Article title: The two-component system CepRS regulates the cephamycin C biosynthesis in

Streptomyces clavuligerus F613-1

Author names: Jiafang Fu^{1, 2†}, Ronghuo Qin^{1†}, Gongli Zong^{1, 2}, Chuanqing Zhong³, Peipei Zhang^{1, 2}, Ni Kang¹, Xiaoyu Qi³, Guangxiang Cao^{1, 2}*

¹ Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China

- ² Key Laboratory for Biotech-Drugs of National Health Commission, Jinan 250062, China
- ³ School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- [†]Jiafang Fu and Ronghuo Qin have contributed equally.
- *Corresponding author: Guangxiang Cao, <u>caozhong0402@163.com</u>
- Tel.: +86 531 8291 9606; Fax: +86 531 8291 9645
- Shandong Medicinal Biotechnology Center,
- Shandong First Medical University & Shandong Academy of Medical Sciences,

Jingshi Road 18877, Jinan 250062, Shandong, China.

Captions

1. Table S1 Plasmids and strains used in this study.

2. Table S2 Primers used in this study.

3. Figure S1. (A) Polymerase chain reaction-based verification of the $\triangle cepS$ and $\triangle cepR$ strains. M: DNA marker. (B) Phenotype of F613-1, $\triangle cepRS$, $\triangle cepR$, $\triangle cepS$ and $\triangle cepRS$ on BSCA solid media. (C) Ceph C (cephamycin C) obtained in F613-1, $\triangle cepRS$, $\triangle cepR$ and $\triangle cepS$ strains on TSA solid medium. *, statistically significant difference (P < 0.05) between $\triangle cepRS$, $\triangle cepR$, $\triangle cepS$ and F613-1 at the same time point.

4. Figure S2. Biomass and clavulanic acid (CA) concentration of F613-1, $\triangle cepRS$ and the complemented strain. A: Growth curves of F613-1, $\triangle cepRS$ and $\triangle cepRS$ com in SCF fermentation medium. Samples for growth curve analysis were harvested at five time points (1, 3, 5, 7 and 9 d). Data are the mean \pm SD of three independent experiments. B: Analysis of the change of CA concentration during fermentation. Data are the mean \pm SD of three independent biological experiments.

5. Figure S3. Expression of genes in the CA biosynthetic gene cluster were examined by RT-qPCR between F613-1 (black bars), $\triangle cepRS$ (grey bars) and $\triangle cepRS$ com (dark grey bars). Results were normalized for 16S rRNA gene content and are shown as fold change over the F613-1 control. Data are the mean \pm SD of three independent biological experiments.

6. Figure S4. A: Phenotype of F613-1, $\triangle cepRS$, $\triangle cepRS$ and $\triangle cepRS$ -cepRS (over-expression strain) on BSCA solid media. B: Cephamycin C obtained in F613-1, $\triangle cepRS$ and $\triangle cepRS$ -cepRS (over-expression strain) strains on TSA solid medium. *, compared with F 613-1, P < 0.05. Data are the mean \pm SD of three independent biological experiments. C: Expression of genes in the cephamycin C biosynthetic gene cluster were examined by RT-qPCR between F613-1 (black bars), $\triangle cepRS$ (grey bars) and $\triangle cepRS$ -cepRS (over-expression strain) (dark grey bars). Results were normalized for 16S rRNA gene content and are shown as fold change over the F613-1 control. *, compared with F613-1, P < 0.05. Data are the mean \pm SD of three independent biological experiments.

Strains or plasmids	Description	Source/Reference
Streptomyces clavuligerus	strains	
F613-1	Industrial clavulanic acid producer	(Qin 2017)
$\triangle cepRS$	F613-1 mutant with cepRS double-gene deletion	This study
$\triangle cepR$	F613-1 mutant with <i>cepR</i> gene deletion	This study
$\triangle cepS$	F613-1 mutant with <i>cepS</i> gene deletion	This study
$\triangle cepRScom$	$\triangle cepRS$ complemented with cepRS	This study
$\Delta cepRS$ -cepRS	$\triangle cepRS$ overexpressed with $cepRS$	This study
<i>∆cepRScom</i> -pSET152	$\triangle cepRS$ complemented with the empty vector pSET152	This study
E. coli strains		
DH5a	General cloning host	Trans (China)
BL21 (DE3)	Strain used for protein expression	Trans (China)
E. coli ESS 2235	a supersensitive organism to beta-lactam antibiotics	(Leite et al. 2016)
ET12567/pUZ8002	Strain used for conjugation between E. coli and Streptomyces	(Kieser et al. 2000)
	spp	
Plasmids		
pJTU1278	E. coli-Streptomyces shuttle vector, $tsr^a bla^a oriT$	(He et al. 2010)
pHLY12	Streptomyces overexpression vector with the strong promoter	Preserved in our lab
	ermEp	
pHLY-cepRS	pHLY12 containing the coding sequence of <i>cepRS</i>	This study
pSET152	Streptomyces integrated vector	BioVector (China)
pET-15b	Expression vector containing the T7 promoter and	Novagene (USA)
	6×His-thrombin	
pSET-cepRS	pSET152 containing the coding sequence of <i>cepRS</i> plus <i>cepR</i>	This study
	upstream intergenic sequence	
pET-cepR	pET15b containing the coding sequence of <i>cepR</i>	This study
pEasy-Blunt-Simple	General cloning vector	Trans (China)
pJTU-cepR	pJTU1278 containing the <i>cepR</i> -disrupted cassette	This study
pJTU-cepS	pJTU1278 containing the cepS-disrupted cassette	This study
pJTU-cepRS	pJTU1278 containing the cepRS-disrupted cassette	This study

Table S1 Plasmids and strains used in this study.

^a tsr, thiostrepton-resistance gene; *bla*, ampicillin-resistance gene.

Oligonucleotides	DNA Sequence (5'→3')*			
Recombinant plasmid pJTU-cepRS, pJTU-cepS, pJTU-cepR construction				
cepRS L-F	GG <u>ACTAGT</u> ACCACATAGGAACGGGTA			
<i>cepRS</i> L-R	CC <u>TCTAGA</u> AATGC <u>AAGCTT</u> GTGAAGACCTATGTGAGCC			
cepRS R-F	GG <u>AAGCTT</u> GATCTCCACGAGGATCATGC			
cepRS R-R	CG <u>TCTAGA</u> GGAAACAGCCGGAAACAG			
<i>cepR</i> R-F	GG <u>ACTAGT</u> AGTCACCCTCACTCAGCC			
<i>cepR</i> R-R	CC <u>TCTAGA</u> AATGC <u>AAGCTT</u> TGCACGCCCTTCAGGAGC			
cepS L-F	GG <u>ACTAGT</u> TTCCCCCACTGCTTCGGC			
<i>cepS</i> L-R	CC <u>TCTAGA</u> AATGC <u>AAGCTT</u> AGGTGGAGGGCTGATCCG			
Validation of $\triangle cepRS$, $\triangle cepR$, $\triangle cepR$ and $\triangle cepRS$ com strain				
cepRS V-F	CTGCACCCGGTTCTCGCA			
<i>cepRS</i> V-R	GTGAAGCTCTCATCCTCGA			
Recombinant plasmid pSET-cepRS construction				
cepRScom-F	GGCTGCAGGTCGAC <u>TCTAGA</u> CCTCGTCGTCCGCCCCGCTC			
cepRScom-R	TCGCGCGCGGCCGC <u>GGATCC</u> CCATGCATCGCCGGGGTCCA			
Recombinant plasmid pHLY-cepRS construction				
cepRS-F	GGAATTC <u>CATATG</u> CGGATCGGCGCCCCGTCAT			
cepRS-R	CTAG <u>TCTAGA</u> CCGCCGAGACCGGGGTGTGA			
Recombinant plasmid pE	T-cepR construction			
<i>cepR</i> His-F	CATATGACGGGGGGCGCCGATCCGGGTGGTCATCGCC			
<i>cepR</i> His-R	CTCGAGTCAGCCCACGCCCAGACCCGCGTCCCGCGC			
EMSAs				
cmcI-cefD p1 For	TCGTTCATTGCCCTCTTCCTTGAGTG			
cmcI-cefD p1 Rev	ATGGTCGTCCGATCGCCGCA			
cmcI-cefD p2 For	CGCCGTTGTGCACCCATGGG			
cmcI-cefD p2 Rev	CCCAGTCGGCTACCGCCATGTC			
cmcI-cefD p3 For	TGCGGCGATCGGACGACCAT			
cmcI-cefD p3 Rev	CCCATGGGTGCACAACGGCG			
lat p For1	GCCCATGGGTGAGAACTCCTGGG			
lat p Rev1	CGGTCCCAGGCTTCGATGGC			
lat p For2	GCCATCGAAGCCTGGGACCG			
lat p Rev2	CAACTGCCCTGAAGCGGGCC			
ccaR For1	TGGCTTCGGCGTAATCCTTG			

Table S2 Primers used in this study.

ccaR Rev1	CTGTCCCAAATCGTCCATGC
ccaR For2	TCGGTGAACCCGGAAGAACC
ccaR Rev2	TTTGCCGAGGATTTCCGGAC
orf10 For1	TTTGAGTACCGTCCGCCGCC
orf10 Rev1	TTCCTCACAGAGCAGACC
orf10 For2	GGTCTGCTCTGTGTGAGGAA
orf10 Rev2	GTTTCCCTGAACCAACGCTG
pcbAB For	CATCATTCGTGGGCTCTCCG
pcbAB Rev	TGGCGAGCAGTGTCACGGCG
cmcT For	GCATGCCGCACGGATGACGC
cmcT Rev	CAGCGGAACTCCCTCGCATG
pbpA For	TACCAGCGGAAGGAGGCACC
pbpA Rev	CTGTCTCCTTCATACGCCGC
RT-qPCR	
16S-RT For	GAGATCCGCCTTCGCCACCG
16S-RT Rev	CTGCATTCGATACGGGCAGGC
pcbR-F	CCAACCTCAAGCCGACGAAG
pcbR-R	ACGCGACCTTCCACTCCTTG
pcbC-F	TGACCGACCAGGAGAAGCAC
pcbC-R	GACCGCCTTGTAGTAGCCGT
pcbAB-F	GCCTATCTCACCTACACCTC
pcbAB-R	AGCGTCTGCCCGTTGATGAG
lat-F	AGGCACTTGAGCAGCATATG
lat-R	ATGCTGGGCGGGTTGATTCC
blp-F	ATGGTGAAGAAGACATGGAG
blp-R	TGGTCGGCACCGGCGAGCTG
orf10-F	CCGATGTCCCGCAGTTGTTG
orf10-R	CCTGGATGACGTCGTCGATC
ccaR-F	TTCGCGGATGTGACCTCCAG
ccaR-R	TCATCAGGCTCACATACAGG
cmcH-F	GTTCTTCACCTCCACGCACG
cmcH-R	CCGAAGAGGAAGGAGTAGCG
cefF-F	TCTTCAACCTCGCCGCACTG
cefF-R	AAGAAGTCCATCGCCGTGTC
cmcJ-F	ACGCGGTGGAGTTCTTCGAC

cmcJ-R	TCGACGTGCACCCGCAGATG
cmcI-F	CCCACGCCAACACCTTCAAC
cmcI-R	CGATGATGAAGTAGTCGCCC
cefD-F	CCACCGTCGTCAACCTCAAC
cefD-R	AGCAGGAAGTCCATCGGCTC
cefE-F	CACCCTCATCCAGCAGACAC
cefE-R	TGCCCGCTATCTGGTCCCTG
pcd-F	TCACCGAGCACAAACAGGAC
pcd-R	TCGCAGATGTCGATCATCTC
cmcT-F	AGGTGCCGCTCTGGTACTTC
cmcT-R	AGCGAGACCAGCAGCATGAC
pbp74-F	AGAGGGGTCGGAAAAGGCTG
Pbp74-R	GCTCCGGCTTCGGCTCCTTG
bla-F	TCGCCTTCTGCTCCACGTTC
bla-R	GGTGAGATCGAGTCGACGTC
gcas-RT For	CACCCCTGGCCGACTATGCC
gcas-RT Rev	GCCCGTGGGTGTACCAGGAC
orf16-RT For	CACCGTCTGCTTCCCGCACG
orf16-RT Rev	GCGGTGCTTGGTCATGTCGG
oppA2-RT For	ACGTCTGGGTGTGGCTGCTC
oppA2-RT Rev	GCAGCCGGTAGGTCCAGGTC
orf14-RT For	CGGCGAACGACGACGAAACG
orf14-RT Rev	CCAGTCGTCGAGGGCGGTC
orf13-RT For	TCCTCTCCGCGATGCGGTTC
orf13-RT Rev	GCATGCCGATGTCGATGGCG
orf12-RT For	AGGGCCGACAAGGAGCGATG
orf12-RT Rev	GTCCGGACGAGGTCAGCAGC
fd-RT For	GCCCCCGAGATCTTCGACCAG
fd-RT Rev	TAGCCCTCGGTGACCGTGAT
cyp450-RT For	AGCCAGGTGTGGCTGGTGAC
cyp450-RT Rev	GCGGATGAACGACGCCGACT
cad-RT For	CCGACTGGACCCGGATGATCG
cad-RT Rev	TTCGTGGCCTGGTAGACGGC
claR-RT For	TGCTGTCGCTGGTCTCCACG
claR-RT Rev	TAGGCCGCGTCCACCTGGTA

oppA2-RT For	ACGTCTGGGTGTGGCTGCTC
oppA2-RT Rev	GCAGCCGGTAGGTCCAGGTC
oat2-RT For	CGACTTCACCGTCCTCGCCT
oat2-RT Rev	GGTCGCGACATTCGCGTTGC
cas2-RT For	CTCCGAGCTTCCCGAGGTGC
cas2-RT Rev	CGCGCAGCAGCAGATAACCG
pah2-RT For	ACGGCGCAGAGCCATCTGTC
pah2-RT Rev	TTGGTGTCGGAGTGCGCGTC
bls2-RT For	TGCCGCTGTACACCTGTGTGG
bls2-RT Rev	CGCGGGCACCTGGTAGACAC
ceaS2-RT For	AGGCCGCGTCGATTCTCTTCG
ceaS2-RT Rev	AGAGGTTGGTCATACCGGGGC
cas1-RT For	GAGGACCGCTCCCTGCTGAC
cas1-RT Rev	CTCCGAGGACAGGTGGTGCG

* Restriction enzyme sites are underlined and were used for cloning purposes.

Figure S1. (A) Polymerase chain reaction-based verification of the $\triangle cepS$ and $\triangle cepR$ strains. M: DNA marker. (B) Phenotype of F613-1, $\triangle cepRS$, $\triangle cepR$, $\triangle cepS$ and $\triangle cepRS$ on BSCA solid media. (C) Ceph C (cephamycin C) obtained in F613-1, $\triangle cepRS$, $\triangle cepR$ and $\triangle cepS$ strains on TSA solid medium. *, statistically significant difference (P < 0.05) between $\triangle cepRS$, $\triangle cepR$, $\triangle cepS$ and F613-1 at the same time point.

Figure S2. Biomass and clavulanic acid (CA) concentration of F613-1, $\triangle cepRS$ and the complemented strain. A: Growth curves of F613-1, $\triangle cepRS$ and $\triangle cepRS$ com in SCF fermentation medium. Samples for growth curve analysis were harvested at five time points (1, 3, 5, 7 and 9 d). Data are the mean \pm SD of three independent experiments. B: Analysis of the change of CA concentration during fermentation. Data are the mean \pm SD of three independent biological experiments.

Figure S3. Expression of genes in the CA biosynthetic gene cluster were examined by RT-qPCR between F613-1 (black bars), $\triangle cepRS$ (grey bars) and $\triangle cepRS$ com (dark grey bars). Results were normalized for 16S rRNA gene content and are shown as fold change over the F613-1 control. Data are the mean \pm SD of three independent biological experiments.

Figure S4. A: Phenotype of F613-1, $\triangle cepRS$, $\triangle cepRS$ com and $\triangle cepRS$ -cepRS (over-expression strain) on BSCA solid media. B: Cephamycin C obtained in F613-1, $\triangle cepRS$ and $\triangle cepRS$ -cepRS (over-expression strain) strains on TSA solid medium. *, compared with F 613-1, P < 0.05. Data are the mean \pm SD of three independent biological experiments. C: Expression of genes in the cephamycin C biosynthetic gene cluster were examined by RT-qPCR between F613-1 (black bars), $\triangle cepRS$ (grey bars) and $\triangle cepRS$ -cepRS (over-expression strain) (dark grey bars). Results were normalized for 16S rRNA gene content and are shown as fold change over the F613-1 control. *, compared with F613-1, P < 0.05. Data are the mean \pm SD of three independent biological experiments.

References:

- He Y, Wang Z, Bai L, Liang J, Zhou X, Deng Z (2010) Two pHZ1358-derivative vectors for efficient gene knockout in *streptomyces*. Journal of microbiology and biotechnology 20(4):678-82
- Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical *Streptomyces* Genetics. John Innes Foundation, Norwich, England
- Leite CA, Cavallieri AP, Baptista AS, Araujo ML (2016) Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in *Streptomyces clavuligerus*. FEMS microbiology letters 363(1):fnv215
- Qin R, Zhong, C., Zong, G., Fu, J., Pang, X., Cao, G. (2017) Improvement of clavulanic acid production in *Streptomyces* clavuligerus F613-1 by using a claR neo reporter strategy. Electronic Journal of Biotechnology 28:41-46