Supplementary material

Testing Heaps' law for cities using administrative and gridded population data sets

Filippo Simini, Charlotte James

Figure S1: a Heaps' law for Europe. Population (x-axis), number of cities with more than 5,000 inhabitants (y-axis), 2-letter country code (marker), logarithm of the area (marker size) and population density (color). The black line is a power law fit of the scaling relationship between the number of cities and the total population. \mathbf{b} The number of cities with more than X inhabitants for countries in Europe with population $N ; C(N, X)$ (y-axis) versus the ratio N / X (x-axis). The scattered cloud of points resulting when plotting $C(N, X)$ against N for various X 's in the range $5 \cdot 10^{3}-5 \cdot 10^{6}$ (inset) collapses on a straight line when $C(N, X)$ is plotted against the ratio N / X. c The average distance to the closest city for countries in Europe (y-axis) scales as the inverse of the square root of the country's population density (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average. d The average distance between cities for countries in Europe (y-axis) scales as the inverse of the country's area (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average.

Figure S2: a Heaps' law for America. Population (x-axis), number of cities with more than 5,000 inhabitants (y-axis), 2-letter country code (marker), logarithm of the area (marker size) and population density (color). The black line is a power law fit of the scaling relationship between the number of cities and the total population. b The number of cities with more than X inhabitants for countries in America with population $N ; C(N, X)$ (y-axis) versus the ratio N / X (x-axis). The scattered cloud of points resulting when plotting $C(N, X)$ against N for various X 's in the range $5 \cdot 10^{3}-5 \cdot 10^{6}$ (inset) collapses on a straight line when $C(N, X)$ is plotted against the ratio N / X. c The average distance to the closest city for countries in America (y-axis) scales as the inverse of the square root of the country's population density (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average. d The average distance between cities for countries in America (y-axis) scales as the inverse of the country's area (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average.

Figure S3: a Heaps' law for Asia. Population (x-axis), number of cities with more than 5,000 inhabitants (y-axis), 2-letter country code (marker), logarithm of the area (marker size) and population density (color). The black line is a power law fit of the scaling relationship between the number of cities and the total population. \mathbf{b} The number of cities with more than X inhabitants for countries in Asia with population $N ; C(N, X)(y$-axis) versus the ratio N / X (x-axis). The scattered cloud of points resulting when plotting $C(N, X)$ against N for various X 's in the range $5 \cdot 10^{3}-5 \cdot 10^{6}$ (inset) collapses on a straight line when $C(N, X)$ is plotted against the ratio N / X. c The average distance to the closest city for countries in Asia (y-axis) scales as the inverse of the square root of the country's population density (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average. d The average distance between cities for countries in Asia (y-axis) scales as the inverse of the country's area (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average.

Figure S4: a Heaps' law for Africa. Population (x-axis), number of cities with more than 5,000 inhabitants (y-axis), 2-letter country code (marker), logarithm of the area (marker size) and population density (color). The black line is a power law fit of the scaling relationship between the number of cities and the total population. \mathbf{b} The number of cities with more than X inhabitants for countries in Africa with population $N ; C(N, X)(y$-axis) versus the ratio N / X (x-axis). The scattered cloud of points resulting when plotting $C(N, X)$ against N for various X 's in the range $5 \cdot 10^{3}-5 \cdot 10^{6}$ (inset) collapses on a straight line when $C(N, X)$ is plotted against the ratio N / X. c The average distance to the closest city for countries in Africa (y-axis) scales as the inverse of the square root of the country's population density (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average. d The average distance between cities for countries in Africa (y-axis) scales as the inverse of the country's area (x-axis). All cities with more than 5,000 inhabitants are considered. The asymmetric error bars denote the standard deviations above and below the average.

