A sample Implementation of LSTM+CNN for Extremist Classification

A sample implementation of the proposed architecture that is LSTM+CNN is performed using
Anaconda which provides free Jupyter notebook environment and also gives assistance about
python 2.7 and 3.6 . The Jupyter notebook contains a series of cell that carry workable code, output,
and descriptive text. For example, the code snapshot in Fig. S1 presents an executable code cell

and its output.

[2] = =2

- Executable code

C 2 Output

Fig. S1 A Code Cell with an Output

The description about the code executed in the implementation section will be given as follows:
Import certain Libraries: In Fig. S2 certain libraries are imported that are needed to perform

different functions and tasks.

import pandas as pd

import numpy as np

import re

import collections

import matplotlib.pyplot as plt

Packages for data preparation

from sklearn.model_selection impeort train_test_split

from nltk.corpus import stopwords

from keras.preprocessing.text impert Tokenizer

from keras.utils.np utils impert to categorical

from sklearn._preprocessing import LabelEncoder

Packages for modeling

from keras import models

from keras import layers

from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers import Dense, Embedding, LSTM, SpatialDropoutlD
from keras.layers.convolutional impert ConvlD,MaxPoolinglD
from keras.preprocessing impert sequence

from keras.layers import Dense, Flatten, Activation, Dropout
from keras import regularizers

Fig. S2 Import the required libraries

Pandas Data Frame for Data Loading: After importing the pandas data frame the data is loaded
into pandas data frame as shown in Fig. S3.

df = pd.read _csv("05(1008).csv")
df.head()

Fig. S3 Data Loading into Pandas Data Frames
Whereas the dataset required for the experimentation is presented in Fig. S4 which is the output of

the above code snippets (Fig. S3)

Tweet label

0 Ottawa police are confirming a shooting at the Ex
1 Passersby working on shooting victim. Fromthe... Ex
2 Shooting at the war memorial in Ottawa. hitp... EX
3 After today we will officially be done shootin... EX
4

KEY: Nothing in Wilson's story in new autopsy ... N-Ex

Fig. S4 Required Dataset

Data-preprocessing: -
In order to obtain better feature from our data we will do some of the basic pre-processing steps.

So let’s discuss them one by one.

Case Conversion: Fig. S5 depicts that case of all the tweets/reviews in the dataset are transformed

into lowercase and it is the first step of preprocessing.

df['Tweet'] = df['Tweet'].apply(lambda x: " ".join(x.lower() for x in x.split()))
df['Tweet'].head()

ottawa police are confirming a shooting at the...

passersby working on shooting victim. from the...

shooting at the war memorial in ottawa. http:\... (http:\...)
atter today we will officially be done shootin...

key: nothing in wilson's story in new autopsy ...

Name: Tweet, dtype: object

Bow Mm@

Fig. S5 Case Conversion

Removing Punctuation: Next punctuation is removed from text data to reduce the size of the data
which will help to reduce extra information as shown in Fig. S6.

df['Tweet'] = df['Tweet'].str.replace(' [*“wWw\s]',"")
df['Tweet"].head()

ottawa police are confirming a shooting at the...
passersby working on shooting victim from the ...
shooting at the war memorial in ottawa httptco...
after today we will officially be done shootin...
key nothing in wilsons story in new autopsy sa...

a
1
2
3
4
Name: Tweet, ditvpe: object

Fig. S6 Remove punctuation

Removal of Stop Word: We used a predefined library as shown in Fig. S7 to remove stopwords
from our data as these commonly occurring word will affect the performance of the model.

from nltk.corpus import stopwords

stop = stopwords.words('english")

df['Tweet'] = df['Tweet'].apply(lambda =x: " ".Jjoin{x for = in x.split() if = not in stop))
df[' Tweet'].head()

ottawa police confirming shooting war memorial...
passersby working shooting victim cbecs jason h...

shooting war memorial ottawa httptcolz@pdmjiSvw
today officially done shooting surrendermusicv...
key nothing wilsons story new autopsy says fea...
Name: Tweet, dtype: object

S

Fig. S7 Stopword removal.
Rare words removal: Just as we remove stop words we have remove the rare words to improve
the model performance depicted in Fig. S8.

freq = pd.Series(' '.join(df['Tweet']).split()).value counts()[-108:]
freq

ottawau20ld
commentary

oldest

canberra

reasons
httptcojcxzycy9lo
hour

timing
httptcotlyzhmabcqg
la

dtype: intéd

R R R RERRRRER R

Fig. S8 Rare word removal.

Splitting Data into Train and Test: After data preprocessing, the dataset is arranged into train and
test set using scikit learn “frain_test split” [21] method. The purpose of train set is to train the
model so that it will be able to learn the data and the test set is used to evaluate the performance
of the model. Fig. S9 illustrates the code for train test split of data.

X_train, X test, y_train, y test = train_test split(df.Tweet, df.label, test size=0.2, random_state=39)
print('# Train data samples:', X_train.shape[@])

print('# Test data samples:', X_test.shape[@])

assert X_train.shape[@] == y_train.shape[8]

assert X_test.shape[@] == y_test.shape[0]

Train data samples: 881
Test data samples: 201

Fig. S9 Train Test Split of Data

Tokenization: Tokenization is the process in which sentences divided into words called as

tokens. The tokenization is performed using keras Tokenizer API (Fig. S10).

Preprocess text with Keras for extremist classification

from keras.preprocessing.text import Tokenizer

max_features = 10000 #¥ Parameter indicoting the number of words we'll put in the dictionary
max_len = 48

Define Tokenizer

tk = Tokenizer({num_words=max_features)

Fit Tokenizer on text (Build vocab etc..)

tk.fit_on_texts(X_train)

word_index = tk.word_index

print(‘Found {:,} unique words.'.format(len(word_index)))

print('Fitted tokenizer on {} documents® . format(tk.document_count))

print{'{} words in dictionary’.format(tk._ num_words))

print{'Top 5 most common words are:', collections.Counter(tk.word countz) . most_common(5))

The output of above code snippets is as follows:

Found 2,184 unique words.

Fitted tokenizer on 801 documents

100ee words in dictionary

Top 5 most common words are: [('ottawa', 446), ('parliament', 276), ('shooting', 191), ('hill', 166), ('shot', 152)]

Fig. S10 Dataset Tokenization.
After having created the vocabulary we can convert the text to a list of integer indexes. This is
done with the text_to_sequences method of the Tokenizer. Fig. S11 depicts text to sequence of

integers conversion.

X_train_seq = tk.texts_to_sequences(X_train)
X_test_seq = tk.texts_to_sequences(X_test)

print(""{}" is converted into {}'.format(X_train[@], X_train_seq[@]))

"ottawa police confirming shooting war memorial minutes ago info cbott ottnews” is converted into [204, 64, 917, 520, 018, 919, 920, 921, 3, 922, 9
23, 924, 925, 926, 284, 927]

Fig. S11 Text to sequence of integers

Converting the target classes to numbers: We need to convert the target classes to numbers as
well as shown in Fig S12.

le = LabelEncoder()
y_train_le = le.fit_transform(y_train)
y_test_le = le.transform({y_test)

Fig. S12 Conversion of target classes

Building a LSTM+CNN Learning Model: Fig. S13 depicts the code snapshots regarding the
development of LSTM+CNN model. In order to build LSTM-CNN model some important layers
are also imported. The first layer is the embedding layer which acts as an input layer for the model.
It consists of three parameters which are:
e max_features(input_dim): max_features also known as input dimension represents the
vocabulary size. It is the amount of top words selected from the dataset.
e embed_dim(output_dim): It is also known as output dimension which describe the length
of embedding vector. In our case, the value of embed_dim is 128 which means the size of

vector is 128.

e input_length: It shows the size of individual input sequences /post.
The next layer is the LSTM layer which is the first hidden layer in LSTM-CNN model. This

layer contain a parameter.

e LSTM units: Size of LSTM hidden state.
Then there is a convolutional layer which is the second hidden layer in CNN model. This layer
contains following parameters.
o filters: It is the amount of output filter within the convolutional layer.
e kernel_size: It determine 1D convolutional window length.
e padding: It has different values like “valid”, “casual” or “same”. When padding is same
then the length of original input and output is same and when the value of padding is casual
it produces widened convolutions. In case of valid it means no padding.

e activation: relu activation function is used and it is a nonlinear operation.

The third layer is the maxpooling layer. It contain the argument which are stated as:

e pool_size: It specify maxpooling window size.
Flatten is the next layer after maxpooling layer and its purpose is to create the column/single vector
of a pooled feature map. After flatten the dense layer is used, which contain the sigmoid activation
function. The mathematical equation of sigmoid function is
olx)=1/1+e7*
In sigmoid function the range of output probabilities will be from 0 to 1. Moreover, the compile
method build the model for training. It involves the following parameters:

e loss: It is an optimization score function.

e optimizer: It presents an instance of an optimizer.

e metrics: This parameter contains the metrics used for an evaluation.

Lastly, the summary method will depict the summary of the model.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM,Bidirectional

from keras.layers.convolutional import ConwvlD

from keras.layers.convolutional import MaxPoolinglD

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

from keras.layers import Dropout

from keras import optimizers

import keras

from keras.utils import plot_model

create the model

embed_dim = 128

model = Sequential()

model.add(Embedding(max_features, embed_dim,input_length = max_len))
model. add(Dropout(@.5))

model.add(LSTM{8@, return_sequences = True))
model.add(ConvlD(filters=32, kernel size=2, padding="walid', activation="relu'})
model.add(MaxPoolinglD(pool size=2))

model.add(Flatten())

model.add(Dense(l, activation="sigmoid"))
model.compile(loss="binary_crossentropy', optimizer="adamax', metrics=['accuracy'])
print(model.summary())

Fig. S13 Developing a Deep Learning Model

Model Summary: Fig. S14 shows the summary of the model which is generated using

“print.summary()” function.

Layer (type) Output Shape Param #
enbedding 70 (Embedding) (Nome, 40, 128) 1280000
dropout_58 (Dropout) (Mone, 48, 128) a

lstm 6@ (LSTM) {None, 4@, B@) 66880
convld 35 (ConvlD) (Mone, 39, 32) 5152
max_poolingld 35 (MaxPooling (Mone, 19, 32) a
flatten_35 (Flatten) (Mone, BB8) a

dense &8 (Dense) (Mone, 1) &9

Total params: 1,352,641
Trainable params: 1,352,541

Fig. S14 Summary of Model

Fitting the Model: The “model.fit()” function is used to train the model on the training data as
shown in Fig. S15. The parameters of the “model.fit() ” method is given as follows:

e X train_seq: It covers training data.

Y_train_le: It covers a label (target) data.

e epochs: This parameter contain epochs number for model training. It is the amount of
iteration over the complete training samples.

e Validation_split: The validation data is the parameter of the “model.fit() ” that contains the
data which will not pass through the training procedure.

e Baitch Size: The batch size is a hyperparameter which is an amount of training samples per

forward or backward pass. Its default value is 32 (in Fig. S15).

batch_size = 32
history=model.fit(X_train_seq,y_train_le, epochs =4, batch_size=batch_size,validation_split=8.1)

Fig. S15 Model Fitting

Training Output: The output of the model during training is illustrated in Fig. S16. It shows the
accuracy, validation accuracy and the loss associated with both the metrics. Moreover, the model

is trained on 720 samples and validate on 81 samples.

Train on 720 samples, validate on 81 samples

523;22;f?==============================] - 1@s 13ms/step - loss: ©.6889 - acc: 9.6014 - val_loss: ©.6708 - val_acc: @.7531
523;22;f?==============================] - 25 2ms/step - loss: ©.618@ - acc: @.8111 - val loss: ©.4832 - val_acc: ©.8148
553;22:f?:::===========================] - 25 2ms/step - loss: ©.3693 - acc: @.8639 - val_loss: ©.3524 - val_acc: @.8395
523?223f?:::===========================] - 25 2ms/step - loss: @.2876 - acc: @.8861 - val loss: ©.3185 - val_acc: ©.8642

Fig. S16 Output during Training

Model Evaluation: In Fig. S17, the performance of the model on a test set is evaluated using
accuracy evaluation metric. The method used to perform evaluation is “model.evaluate()” whereas
verbose is an argument of the evaluate function which contain an integer values like 0,1,2 where
0 means silent,1 means progress bar,2 means 1 line per epoch.

score,acc = model.evaluate(X_test_seq, y_test_le, wverbose = 2, batch_size = batch_size)

print{"score: %.2f" ¥ (score))
print({"acc: ®.2f¥¥" ¥ (acc*1lee))

sCore: @.34
acc: B7.86%

Fig. S17 Evaluation of the model

Confusion Matrix: Confusion matrix is represented in the form of a table which is used to report
the performance related with the model [23]. In order to use the confusion matrix it is necessary
to import it from sci-kit learn library (Fig. S18).

¥matplotlib inline

from sklearn.metrics import confusion_matrix
import itertools

import matplotlib.pyplot as plt

Fig. S18 Import Confusion Matrix

The code snapshot in Fig. S19 shows that the creation of a variable cm is performed through calling
a “confusion_matrix”. The “confusion _matrix”’ contains two parameters y test_le and y_pred. So,

a confusion matrix named as cm is defined in the below screenshot.

cm=confusion_matrix{(y_test_le), v_pred)

Fig. S19 Creation of Confusion Matrix

A confusion matrix is plotted using “plot confusion matrix” function (Fig. S20).

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/%5d.%20In

class_names=["NR","R"]
print(__doc__)

import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title="Confusion matrix®,
cmap=plt.cm.ralnbow):
This function prints and plots the confusion matrix.
Mormalization cam be applied by setting “normalize=True”.
if normalize:
cm = cm.astypel 'float') / cm.sum{axis=1)[:, np.newaxis]
print({"Normalized confusion matrix")
else:
print('Confusion matrix, without normalization®)

printi{cm)

plt.imshow{cm, interpolation="nearest’, cmap=cmap)
plt.title(title)

plt.colorbar()

tick_marks = np.arange(len(classes))
plt.xticks({tick_marks, classes, rotation=45)
plt.yticks{tick_marks, classes)

fmt = ".2f' if normalize else 'd’
thresh = cm.max() / 2.
for i, j in itertools.product{range(cm.shape[@]), range(cm.shape[l]))}:
plt.text(j, 1, format(cm[i, j], fmt),
horizontalalignment="center"”,
color="white" if cm[i, j] » thresh else "black")

plt.ylabel("True label")}
plt.xlabel("Predicted label®)
plt.tight_layout()

Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_le, y_pred)
np.set_printoptions(precision=2)

Plot nen-normalized confusion matrix

plt.figure()

plot_confusion_matrix{cnf_matrix, classes=class_names,title='Confusion matrix')
Plot normalized confusion matrix

#plt.figure()

#plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,title="Normalized confusion matrix')

plt.show()

Fig. S20 Code on Plotting Confusion Matrix

Now, the output of the code shown in Fig. 20 is illustrated in Fig. S21. In the plot (Fig. S21),
predicted label is placed at x-axis and True label is placed at y-axis. The red cells depicts the
accurate predictions and blue cells depicts inaccurate predictions.

Automatically created module for IPython interactive environment
Confusion matrix, without normalization

[[89 11]

[15 861]

Confusion matrix

=

True label

M-Ex Ex
Predicted label

Fig. S21 Confusion Matrix
Evaluation Metrics: Fig. S22 presents the code and its desired output for an evaluation metrics
namely precision, recall and f1-score. The function “model.predict() " is used to perform prediction

on test set.
precision recall fl-score support
N-Ex 2.86 a.89 a.87 laa
Ex 2.89 @.85 a.87 181
avg f total 8.87 a.87 a.87 281

Fig. S22 Metrics for Evaluation.

Muhammad Zubair Asghar, PhD

ORCID: https://orcid.org/0000-0003-3320-2074

Google Scholar: https://scholar.google.com.pk/citations?user=_ CNMYUOQAAAAJ&hl=en

HEC Approved PhD Supervisor, ICIT, Gomal University, khyber Pakhtunkhwa (KP), Pakistan

https://orcid.org/0000-0003-3320-2074
https://scholar.google.com.pk/citations?user=_CNMYU0AAAAJ&hl=en

