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Models

Regulatory Framework
For a group of Ns cooperating (Co - cooperativity fold, Coε[1,∞]) equal binding sites, all with
binding constant K, the probability of occupancy of at least one site in the group is equal to [1]:

p ([A],K,Co, Ns) = 1− Co
Co + (1 + CoK[A])Ns − 1

.

According to this framework, p is proportional to the probability of activation of a gene, regulated
by the transcriptional activator A. If A is a transcriptional repressor, the the probability of repres-
sion of the downstream gene is 1−p. If gene expression is outcome of several regulatory events and
they are all required for expression, then the synthesis rate, P , of the gene is given by the product
of activation from i site arrays for i activators and repression from j site arrays for j repressors as
follows [2]:

P =
∏
i

pacti
∏
j

(
1− prepj

)
,

where pacti is the occupancy probability of activator i and prepj is the occupancy probability of
activator j. Input integration using multiple independent activators can be expressed using the
following:

P = 1−
∏
i

(
1− pacti

)
.

Here, we give an example to mathematically construct the regulatory information for the gap gene
Giant (Gt). For more details, please refer to [3].

Figure 1: Regulatory interactions of Giant. Giant is activated by the maternal genes, bicoid and
caudal, in a OR manner. It is repressed by the gap gene, Kruppel.

As depicted in fig. 1, Giant (Gt) is activated by the presence of either of the maternal genes,
Bicoid or Caudal, (OR activation). In addition, Giant is repressed by the action of of Kruppel.
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Based on this scheme, we can formulate the rate of Giant production as:

PGt = (1− (1− pBcd)(1− pCad))(1− pKr),

PGt =(1− CBcdo

CBcdo + (1 + CBcdo KBcd[Bcd])N
Bcd
s − 1

∗ CCado

CCado + (1 + CCado KCad[Cad])N
Cad
s − 1

)

∗ (
CKro

CKro + (1 + CKro KKr[Kr])N
Kr
s − 1

).

Model Equations
Assuming the constants defined in Table 1 of the paper, we provide the complete partial differential
equations associated with each of the gap genes.
Hunchback (Hb):

∂

∂x
[Hb] = α

(
(1− Co

Co + (1 + CoK3[Bcd])Ns − 1
)(1− Co

Co + (1 + CoK[Hb])Ns − 1
)(

Co
Co + (1 + CoK[Kni])Ns − 1

)

)
− β[Hb] +D/L2 ∂

2[Hb]

∂x2
.

Knirps (Kni):

∂

∂x
[Kni] = α

(
(1− Co

Co + (1 + CoK3[Bcd])Ns − 1
)(

Co
Co + (1 + CoK1[Hb])Ns − 1

)(
Co

Co + (1 + CoK[T ll])Ns − 1
)

)
− β[Kni] +D/L2 ∂

2[Kni]

∂x2
.

Kruppel (Kr):

∂

∂x
[Kr] = α

(
(1− Co

Co + (1 + CoK[Hb])Ns − 1
)(

Co
Co + (1 + CoK[Hb])Ns − 1

)(
Co

Co + (1 + CoK[Gt])Ns − 1
)

)
− β[Kr] +D/L2 ∂

2[Kr]

∂x2
.

Giant (Gt):

∂

∂x
[Gt] = α

(
(1− (1− Co

Co + (1 + CoK3[Bcd])Ns − 1
∗ Co
Co + (1 + CoK[Hb])Ns − 1

))

(
Co

Co + (1 + CoK2[Kr])Ns − 1
)(

Co
Co + (1 + CoK[T ll])Ns − 1

)

)
− β[Gt] +D/L2 ∂

2[Gt]

∂x2
.

To produce the base model A6, K3 is set to equal K and K2 is set to equal K1. Further models
are derived according to specifications in Table 1 of the main section. To include the activation of
kruppel by bicoid, the equation of kruppel above is modified to the following:

∂

∂x
[Kr] = α

(
(1− Co

Co + (1 + CoK3[Bcd])Ns − 1
)(1− Co

Co + (1 + CoK[Hb])Ns − 1
)

(
Co

Co + (1 + CoK[Hb])Ns − 1
)(

Co
Co + (1 + CoK[Gt])Ns − 1

)

)
− β[Kr] +D/L2 ∂

2[Kr]

∂x2
.

Here, [Bcd], [T ll] are the concentrations of maternal genes bicoid and tailless respectively. All
concentrations are function of space and time, i.e.:

[A] ≡ [A](x, t)

Normalization
We assume equal synthesis rates for all four gab genes. This value is also same as the deacy
rate for each of the gap genes. Further, Papatsenko and Levine [3] assumed that the gap genes
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undergo similar activation at the beginning of their expression. This assumption can be handled
by applying a normalization constant to the production term. Specifically, we pre-multiply the
synthesis rate of gap gene [A] with ωA:

∂

∂t
[A] = ωAαP actA (1− P repA )− β[A] +D/L2 ∂

2[A]

∂x2
,

ωA =
1

Max(P act(x|t = 0,K,Co, Ns))
.

Model Solution
We provide here the complete solution to the reaction-diffusion equation describing gap gene ex-
pression. We first do a change of variables to dimensionless space x→ x/L, where L is the length
of the embryo, and rewrite the equation as:

∂

∂t
ui(x, t) = αPAi (1− PBi )− βui(x, t) +D/L2 ∂

2ui(x, t)

∂x2
, (1)

i = Hb,Kr,Kni,Gt,

u′(0, t) = u′(1, t) = 0, u′ =
∂u

∂x
,

0 < x < 1, 0 < t < T.

Stated this way, the expression of gap genes is a system of non-linear partial differential equations
(PDEs). For convenience, in the following derivation we drop the subscript i and set f = αPAi (1−
PBi ) to capture the non-linearity in the system. The time differential of the concentration, u, is
represented by ut. Thus, we can write the above equation in the weak form as:

< ut, v > = < f, v > −β < u, v > +D/L2 < uxx, v > .

Integrating by parts, we can re-write the above as:

< ut, v > = < f, v > −β < u, v > −D/L2 < ux, vx > .

We use the finite element subspace, Vh = span{φi|1 ≤ i ≤ n} and approximate the solution with
un =

∑n
j=0 ujφj where, for i = 1 · · ·n− 1:

φi(x) =


nx− (i− 1), i−1

n ≤ x ≤
i
n

(i+ 1)− nx, i
n ≤ x ≤

i+1
n

0, otherwise

and

φ0(x) =

{
1− nx, 0 ≤ x ≤ 1

n

0, otherwise,

φn(x) =

{
nx− (n− 1), n−1

n ≤ x ≤ 1

0, otherwise.

Given the basis, we can write the finite element method as:

n∑
j=0

(uj)t < φj , φi >=< f, φi > −
n∑
j=0

uj(β < φj , φi > +D/L2 < φ′j , φ
′
i >).

Rewriting in matrix form, where the superscript, n , now indicates that we are working in the
subspace Vh,

Mnunt = −(βMn + (D/L2)Kn)un + F

unt = −(βI + (D/L2)(Mn)−1Kn)un + (Mn)−1F

unt = −Anun + Fn. (2)
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Here, F = (< f, φ1 >,< f, φ2 >, · · · , < f, φn >)
′ and

Mn = [Mn
ij ] = [< φj , φi >],

Kn = [Kn
ij ] = [< φ′j , φ

′
i >],

An = βI + (D/L2)(Mn)−1Kn

Fn = (Mn)−1F.

We can now use the integrating factor method to solve the above ordinary differential equation in
(2). Consider an interval τ in which we study the system. We can divide the total time T into T/τ
such intervals and examine the system at the kth step where unk = un(kτ). Using this formulation,
we write:

unk+1 = un((k + 1)τ)

= eA
nτun(kτ) +

∫ (k+1)τ

kτ

eA
n((k+1)τ−s)Fn(un(s))ds

≈ eA
nτun(kτ) +

∫ (k+1)τ

kτ

eA
n((k+1)τ−s)dsFn(un(kτ))

≈ eA
nτun(kτ) +

∫ τ

0

eA
nsdsFn(unk )

⇒ unk+1 ≈ Φnunk +BnFn(unk ) (3)

As An is invertible, the integral Bn =
∫ τ
0
eA

nsds is evaluated to be (An)−1(eA
nτ − I). Equation

(3) now provides an iterative solution for the PDE expressed in (1).

Runtime Comparison

Figure 2: Runtime comparison of solver due to Papatsenko-Levine and using a finite element
solution (our method). Our solver has a speed up of around 20X when computed over 10 function
evaluations.
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Fitting to simulated data & identifiability

Figure 3: Corner plot [4] showing pair-wise joint densities of parameter for model C8. Simulated
data, generated by adding noise to the output of the model with known parameters, was used
to fit the model. The true values of the parameters are shown with blue lines. We see a strong
negative correlation between the number of binding sites parameters, Ns, and the binding affinity
parameters, K,K1,K2,K3.

To investigate the structural properties of the Papatsenko-Levine formalism, we fit the model C8
(largest number of parameters) to simulated data generated with a known parameter set. The
simulated data is contaminated with Gaussian noise having zero mean and 0.1 variance. The
parallel tempering sampler was used to fit the model to simulated data using 100,000 generations.
As can be seen in figure 3, the parameters α, D and Co are recovered and show no confounding.
However, it can be seen that the parameter for number of sites parameters (Ns) is negatively
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correlated with binding affinities (K1, K2, K3). The binding affinities themselves are positively
correlated. This points towards structural identifiability issues, but also is slightly intuitive as
weaker binding affinity can be compensated by a increase in the number of ‘weak’ binding sites.

We also use a non-parametric bootstrap-based algorithm [5][6] to test for structurally non-
identifiable parameters. In order to do this, 5000 fits with random initial values drawn from
the parameter space were computed. The best 5% fits based on χ2 values were analyzed non-
parametrically for relations between parameters (fig. 4) that would indicate structural identifiabil-
ity. The parameters for synthesis rate, α, diffusion rate, D and cooperativity, Co, are found to be
strongly identifiable. The binding affinities K1,K2,K3 show some correlation with the number of
sites Ns parameter and are weakly identifiable. We also want to point out that any identifiability
issues can be integrated out in the calculation of the marginal likelihood in a Bayesian framework
and as such model selection can still be performed.

Figure 4: Identifiability: Non-parametric evaluation of parameter correlations based on sampling
scheme that chooses the best 5% fits from random draws from whole parameter space. Parameters
are weakly correlated indicating identifiability.

6



Diagnostic test & expression profile for models D7 & D8

Figure 5: Gelman plot showing evolution of the diagnostic gelaman-rubin statistic for models, D7
and D8. Red dotted line is 97.5% confidence interval. 10 independent runs from random start
points were used to test convergence. Median values below 1.2 signal convergence of the chains.

7



Figure 6: Gene Expression profiles for models D7, D8. Black lines show observed values and blue
lines are model outcomes by sampling parameters from the joint posterior. For each model, 100
samples were drawn. Vertical dotted lines show domains over which the likelihood was computed.
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