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Figure S1 Performance evaluation in yeast in silico experiment. Using RNA-seq data derived from a yeast experiment, a
differential expression analysis was performed comparing two groups with five samples each and differential signal added to 2000 out
of approximately 6500 genes (30%) using an informative covariate. An evaluation of the performance includes the (A) FDR, (B)
TPR, and (C) number of rejections by FDR (alpha) cutoff. (D) Percentage significant at 0.05 cutoff (log-scale) by effect size (log2
fold change) percentile. Method is denoted by color and the mean value across 100 replications with standard error bars is shown in
(A)-(D). (E) Mean overlap of discoveries at 0.05 cutoff across methods and underlying truth.
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Figure S2 FDR versus TPR in in silico experiments and simulations. Following the style of the R/Bioconductor iCOBRA
package [1], the average FDR is plotted on the x-axis against the average TPR on the y-axis for the yeast RNA-seq in silico
resampling experiments (left) and RNA-seq counts using the polyester R/Bioconductor package (right). Three points are included
for each line (method) at the following nominal α values: 0.01, 0.05, and 0.10. A solid point indicates FDR was controlled at the
nominal level (on average), whereas an open point indicates that it was not. Averages are taken over all 100 simulation replications.
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Figure S3 FDR and TPR under various spike-in settings of yeast in silico experiments. Plots of FDR and TPR across α cutoff
values over 100 replications in the yeast simulation (sample size 5 in each group) by alpha level. Vertical bars depict standard error.
Each panel within A and B represents a combination of settings for π0: 30% (2000) and 7.5% (500) non-null genes (total of 6500
genes), as well as different non-null effect size distributions: bimodal and unimodal. (A) For a strongly informative covariate: the
informative covariate is equal to the sampling weights for non-null genes. (B) For a weakly informative covariate: the informative
covariate is equal to the sampling weights for selecting non-null genes plus noise.
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Figure S4 Performance evaluation in simulations. (A) FDR control and (B) TPR across varying informativeness. (C) FDR and
(D) TPR across varying number of hypotheses (E) FDR and (F) TPR across varying proportions of null and alternative hypotheses.
Method is denoted by color and the mean value across 100 replications with standard error bars is shown in (A)-(F). The FDR and
TPR are shown at the nominal 0.05 cutoff.
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Figure S5 Simulation performance across informative covariate relationship (A) Relationship between covariate value, x, and
null proportion of hypotheses, π0, across simulation settings. (B) FDR and (C) TPR across nominal FDR thresholds between 0.01
and 0.10 are shown for each method across four informative covariates described in the “Methods” section. Differences in (D) FDR
and (E) TPR between informative and uninformative covariates are also shown.
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Figure S6 Simulation performance across test statistic distributions (A) Distributions of test statistics for null and non-null tests
in one replication of each simulation. (B) FDR control and (C) TPR across different test statistic distributions. Differences in (D)
FDR and (E) TPR between informative and uninformative covariates are also shown. Method is denoted by color and the mean value
across 100 replications with standard error bars is shown in (B)-(E). Results for ash, fdrreg-t, fdrreg-e are not shown for the χ2

4
setting due to due to distributional assumptions of the methods (see Figure 1). Method is denoted by color and the mean value
across 100 replications with standard error bars is shown in (B)-(E).
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Figure S7 Simulation performance across effect size distributions (A) Distributions of effect sizes included in unimodal effect
size simulations. (B) FDR and (C) TPR across nominal FDR thresholds between 0.01 and 0.10 are shown for each method across
four distributions of the non-null effect sizes presented in [2]: bimodal, flat-top, skew, and spiky. All distributions are unimodal with
mode at zero except for the “bimodal" setting. Settings are tested to evaluate the performance of ASH against all other methods
under the unimodal assumption. Differences in (D) FDR and (E) TPR between informative and uninformative covariates are also
shown. Method is denoted by color and the mean value across 100 replications with standard error bars is shown in (B)-(E).
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Figure S8 Simulation performance across unimodal effect size distributions w/ 25% non-null Same as Figure S7 but with
increased proportion of non-null hypotheses. (A) Distributions of effect sizes included in unimodal effect size simulations. (B) FDR
and (C) TPR across nominal FDR thresholds between 0.01 and 0.10 are shown for each method across four distributions of the
non-null effect sizes. Differences in (D) FDR and (E) TPR between informative and uninformative covariates are also shown. Method
is denoted by color and the mean value across 100 replications with standard error bars is shown in (B)-(E).
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Figure S9 Informativeness covariate relationships. Relationship between covariate value, x, and null proportion of hypotheses, π0,
across several δ informativeness values for (A) pc-info and (B) ps-info.
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Figure S10 Impact of covariate information in yeast experiments Mean difference of FDR and TPR (with informative covariate -
without informative covariate) over 100 replications in the yeast simulation (sample size 5 in each group) by alpha level. Vertical bars
depict standard error. Each panel within A and B represents a combination of settings for π0: 30% (2000) and 7.5% (500) non-null
genes (total of 6500 genes), as well as different non-null effect size distributions: bimodal and unimodal. (A) For a strongly
informative covariate: the informative covariate is equal to the sampling weights for non-null genes, and a (B) For a weakly
informative covariate: the informative covariate is equal to the sampling weights for selecting non-null genes plus noise.
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Figure S11 Gain from informative covariate varies by case study. (A) For each method (y-axis) that uses an informative
covariate, the percent change in rejections when using an informative covariate as compared to using a completely uninformative
covariate is represented by color. This is defined as number of rejections when using the informative covariate divided by the number
of rejections when using the uninformative (random) covariate, multiplied by 100. This value is averaged across all datasets and
informative covariates used in each case study (x-axis). If rejections were found using the informative covariate but none were found
using the uninformative covariate, the percentage was set to 100%. The maximum value of this percentage in each column is
labeled. (B) For each method (y-axis) that uses an informative covariate, the absolute percentage change in FDR (left) and TPR
(right) in the yeast in silico experiments are represented in color (setting with 5 samples in each group, unimodal effect size
distribution, and 30% non-null genes). Results are averaged over 100 simulation replications.
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Figure S12 Simulation performance with modified AdaPT parameters (A) FDR and (B) TPR across nominal FDR thresholds
between 0.01 and 0.10 are shown for a subset of methods with the “step" informative covariate (Figure S5). Differences in (C) FDR
and (D) TPR between informative and uninformative covariates are also shown. AdaPT with model parameters modified to include a
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the mean value across 100 replications with standard error bars is shown in (A)-(D).



Page 13 of 26

0%

10%

20%

30%

40%

0% 25% 50% 75% 100%

Overall mean expression percentile

P
er

ce
nt

 r
ej

ec
te

d

RNA−seq case study: BrainA

0%

10%

20%

30%
40%
50%

0% 25% 50% 75% 100%

Detection rate percentile

P
er

ce
nt

 r
ej

ec
te

d

scRNA−seq case study: Human, MASTB

0%

20%

40%

60%

0% 25% 50% 75% 100%

Gene Set size percentile

P
er

ce
nt

 r
ej

ec
te

d

GSEA case study: MouseC

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0% 25% 50% 75% 100%

Minor Allele Frequency (MAF) percentile

P
er

ce
nt

 r
ej

ec
te

d

GWAS case studyD

Method

adapt−glm

ashq

bh

bl

bonf

fdrreg−e

fdrreg−t

ihw

lfdr

qvalue

Figure S13 Relationship between informative covariate and rejection rate was highly variable across case studies. Four
informative covariates from four different case study datasets were chosen to illustrate the wide variation in the relationship between
the informative covariate and the proportion of tests rejected across all FDR controlling methods. (A) Relationship between the
overall mean expression percentile and rejection rate in the brain RNA-seq dataset. (B) Relationship between the detection rate
percentile and the rejection rate in the Human single cell RNA-seq dataset. (C) Relationship between the gene set size percentile and
the rejection rate in the Mouse GSEA dataset. (D) Relationship between the minor allele frequency (MAF) percentile and the
rejection rate in the GWAS case study.
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Figure S14 Examples of informative covariates that are independent under the null hypothesis. Distribution of p-values overall
(left-most panel) and in three approximately equal sized bins by informative covariate (right panels) for (A) the brain dataset in the
RNA-seq case study using overall mean expression as the informative covariate, (B) the human dataset in the single-cell RNA-seq
case study analyzed by MAST using the detection rate as the informative covariate, (C) the mouse dataset of the GSEA case study
using the gene set size as the informative covariate, and (D) the GWAS case study using the minor allele frequency as the
informative covariate.
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FDR correction method (row). Numerical values for the data in (A) are displayed in Table S4.
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Figure S16 Comparison of the number of rejections in yeast simulation and case studies. Boxplots of the proportion of
maximum rejections across all case studies (y-axis) is shown for each method, where the x-axis position reflects the proportion of
maximum rejections in the yeast simulation (setting with sample size 5 in each group, unimodal effect size distribution, and 30%
non-null genes). The alpha cutoff to determine rejections is 0.05.
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Figure S17 Gain from informative covariate varies by dataset and covariate in case studies. For each method (y-axis) that uses
an informative covariate, the percent change in rejections when using an informative covariate as compared to using a completely
uninformative covariate is represented by color. This is defined as number of rejections when using the informative covariate divided
by the number of rejections when using the uninformative (random) covariate, multiplied by 100. This is shown separately for each
dataset (grouped by case study and informative covariate, x-axis). If rejections were found using the informative covariate but none
were found using the uninformative covariate, the percentage was set to 100%. The maximum value of this percentage in each
column is labeled. The informative covariate used in each case study is listed in Table 1. For case studies with more than one
covariate, the covariate is denoted in the column labels.
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Table S1 Approaches to adjust for multiple comparisons across hypothesis tests. The family-wise error rate (FWER) is the probability of at least one false discovery. The false
discovery rate (FDR) is the expected fraction of false discoveries among all discoveries. FDR adjusted p-values are defined as adjusted p-values that have control FDR at nominal Type
1 error (α) level. π0 represents the proportion of null hypothesis tests.

Control Method Input Output
Two Groups Model

Description Availability (R)
xi ∼ π0,i ∗ f0,i + (1 − π0,i) ∗ f1,i

xi = π0,i = f0,i = f1,i =

FWER
Bonferroni correction

[3, 4]

(1) p-values

adjusted
p-
values[1]

- - - - Robust to dependence, but very conservative package: stats
function(s): p.adjust

FDR

Benjamini-Hochberg
Procedure (BH) [5] p-value equal

across
tests

equal
across
tests

equal
across
tests

First method proposed for controlling the FDR. More powerful
than controlling FWER. However, previously shown to have
sub-optimal power when the individual tests differ in statistical
properties such as sample size, true effect size, signal-to-noise
ratio or prior probability of being false [6].

package: stats
function(s): p.adjust

Storey’s q-value [7] q-value[2]
test
statistic

Directly estimates π0. Increasingly more powerful than BH as
π0 decreases, while controlling FDR.

package: qvalue
function(s): qvalue

Independent
Hypothesis Weighting

(IHW) [6]

(1) p-values,
(2)
independent
covariate

adjusted
p-values

p-value

equal
within
covariate
groups

equal
across
tests

equal within
covariate groups

Weighted BH method to prioritize tests using data-derived
weights computed for groups of tests binned according to an
independent covariate. Does not calculate π0,i explicitly.

package: ihw
function(s): ihw,
adjust_pvalues

Boca and Leek
Procedure (BL) [8]

test
statistic

continu-
ous
(logistic)
function
of
covariate

equal
across
tests

equal across tests

Weighted BH method to prioritize tests using data-derived
weights computed using logistic regression with the
independent covariate. Equivalent to Storey’s q-value in the
case of no covariates.

package: swfdr
function(s): lm_pi0 [3]

Cai and Sun’s
Conditional Local

FDR (lfdr) [9]

equal
within
covariate
groups

equal
within
covariate
groups

equal within
covariate groups

Modifies the standard two-group model by assuming known
group structure and using different cutoffs for each group. FDR
is controlled at different rates for each group to minimize the
global false nondiscovery rate (FNR) subject to a constraint on
the global FDR.

none [4]

AdaPT (adapt-glm)
[10]

q-
values[5]

p-value

continu-
ous
(logistic)
function
of
covariate

equal
across
tests

continuous density
(exponential family),
with parameter
modeled as a
continuous function
(glm) of covariate

Modifies the Barber-Candès procedure [11, 12][6] by
introducing an iterative, data-adaptive thresholding algorithm.
The threshold depends on the covariate through the estimates
of π0,i and f1,i.

package: adaptMT
function(s): adapt,
adapt_glm, adapt_gam

or adapt_glmnet [7]

FDR Regression
(FDRreg) (empirical)

[13] (1) z-scores,
(2)
independent
covariate

Bayesian
FDRs

test
statistic

continu-
ous
(logistic)
function
of
covariate

equal
across
tests

equal
across
tests

Modifies the standard two-group model by modeling the mixing
proportions of the distributions for each test as a logistic
function of an informative covariate (or spline expansion of the
covariate). Assumes that the test statistics are normally
distributed, with arbitrary mean and variance (empirical null) or
standard normal (theoretical null).

package: FDRreg
function(s): FDRreg
[8]

FDR Regression
(FDRreg)

(theoretical) [13]

Adaptive Shrinkage
(ASH) [2]

(1) effect
sizes,
(2) standard
error

q-
values[9]

effect size
equal
across
tests

equal
across
tests

inversely proportional
to power of standard
error

Introduces the concept of the local false sign rate and s-values
for controlling errors across multiple tests. Same approach can
also be used to compute q-values and the local false discovery
rate. Assumes that the distribution of effect sizes is unimodal.

package: ashr
function(s): ash,
get_qvalue

[1]Formally, the BH approach does not generate adjusted p-values, but instead provides significance calls at a specified α FDR cutoff. Adjusted p-values are commonly computed
as the smallest FDR cutoffs at which each test would be called significant.
[2]The q-value is defined as the positive FDR (pFDR) analogue of the p-value. Approach can also be used to compute the local false discovery rate.
[3]Requires specification of a degrees of freedom parameter. Requires multiplying weights against BH adjusted p-values to obtain adjusted p-values
[4]Custom implementation using fdrtools package (function: fdrtools). Requires manually specifying covariate groups, computing local fdr with fdrtools package, followed by
custom code
[5]q-value is defined as the minimum target FDR level such that the p-value is rejected. For hypotheses with p-values above the initial threshold value (default 0.45), the q-values
are set to ∞ because they are never rejected by adapt-glm for any α.
[6]The Barber-Candès procedure estimates the false discovery proportion by quantifying the asymmetry in the distribution of p-values at a given threshold.
[7]adapt_glm, adapt_gam, and adapt_glmnet are all wrappers around adapt that encode a specific assumption about the relationship between π(x) and µ(x). Requires manually
specifying the models for these relationships with, e.g. splines package.
[8]Requires manually specifying model matrix with, e.g. splines package
[9]The method also returns local false sign rates, local false discovery rates, and s-values, where s-vales are defined analogous to Storey’s q-value, but with the local false sign
rate rather than the local false discovery rate. Since the aim of our analysis was to compare methods for controlling the FDR, we only report results for the estimated q-values.
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Table S2 Yeast in silico experiment settings. The results from each series of simulations is reported as a separate Additional file in the
supplementary materials, with the exception of the Null series, which is combined with the ‘Unimodal Alternative, High π0’ series. Both
the ‘Null’ and ‘Unimodal Alternative, High π0’ series are also evaluated in the Polyester in silico experiments, and these results are
provided as a separate separate file.

Series Non-null Effect Non-null Genes Covariate Strength[10] Figures Additional
Size Distribution[11] N(%)[12] File

Null – 0 – – 2

Unimodal Alternative, High π0 Unimodal 2000 (≈30%)
Strong

S1, S15, S11, S3, S10 2Weak
Uninformative

Unimodal Alternative, Low π0 Unimodal 500 (≈7.5%)
Strong

S3, S10 3Weak
Uninformative

Bimodal Alternative, High π0 Bimodal 2000 (≈30%)
Strong

S3, S10 4Weak
Uninformative

Bimodal Alternative, Low π0 Bimodal 500 (≈7.5%)
Strong

S3, S10 5Weak
Uninformative

[10]In all cases, non-null genes were selected using probability weights sampled from a logistic function (where weights w(u) =
1

1+e−10u+5 , and u ∼ U(0, 1)). The strongly informative covariate Xs was equal to the logistic sampling weight w. The weakly
informative covariate Xw was equal to the logisitic sampling weight plus noise: w + ε, where ε ∼ N(0, 0.25), truncated such that

Xw ∈ (0, 1). The uninformative Xu covariate was unrelated to the sampling weights and drawn from a uniform distribution such

that Xu ∼ U(0, 1)
[11]For unimodal alternative effect size distributions, the observed fold changes for the selected non-null genes in a non-null empirical

comparison were used. For bimodal alternatives, observed test statistics z from an empirical non-null comparison were sampled

with probability weights w(z) = f(|x|;α, β), where f is the Gamma probability density function (with shape and rate parameters

α = 4.5 and β = 1 − 1e−4, respectively). The corresponding effect sizes (fold changes, FC) for ashq were calculated assuming a

fixed standard error: FC = zσm, where σm is the median standard error of the log2 fold change across all genes.
[12]Total number of genes considered (with mean expression across all samples greater than 1 raw count) is 6553. A small number

of genes are removed from each replicate if DESeq2 does not return a p-value.
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Table S3 Simulation settings. The results from each series of simulations is reported as a separate Additional file in the supplementary
materials.

Series M Test Statistic Effect Size Marginal Null Covariate Relationship FiguresDistribution Distribution Proportion (π̄0) (p(x; π̄0))

Null 20000

N(0, 1)

– 1.00 – –t11
t5
χ2
4

Informative (cubic) 20000

N(0, 1) N(3, 1)

0.90 pcubic(x; π̄0) Figure S6,Figure S5t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (step) 20000

N(0, 1) N(3, 1)

0.90 pstep(x; π̄0) Figure S5t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (sine) 20000

N(0, 1) N(3, 1)

0.90 psine(x; π̄0) Figure S5t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (cosine) 20000

N(0, 1) N(3, 1)

0.90 pcosine(x; π̄0) Figure S5t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Unimodal Effect Sizes 20000 N(0, 1)

bimodal

0.90 pcubic(x; π̄0) Figure S7spiky
flat-top
skewed

20000 t11

bimodal

0.90 pcubic(x; π̄0) –Unimodal Effect Sizes spiky
(t11 test statistics) flat-top

skewed

20000 N(0, 1)

bimodal

0.75 pcubic(x; π̄0) Figure S8Unimodal Effect Sizes spiky
(25% non-null) flat-top

skewed

Varying M Tests

100

N(0, 1) N(3, 1) 0.90 psine(x; π̄0) Figure S4C-D

500
1000
5000
10000
50000

Varying Null Proportion 20000 N(0, 1) N(2, 1)

0.05

psine(x; π̄0) Figure S4E-F
0.10
· · ·
0.95
0.99

20000 N(0, 1) N(2, 1)

0.05

psine(x; π̄0) –
Varying Null Proportion 0.10
(t11 test statistics) · · ·

0.95
0.99

20000 N(0, 1) N(2, 1) 0.80

pc-info(x; δ = 0)

Figure S4A-BVarying Informativeness pc-info(x; δ = 5)
(continuous p(x; δ)) · · ·

pc-info(x; δ = 100)

20000 N(0, 1) N(2, 1) 0.80

pd-info(x; δ = 0)

–Varying Informativeness pd-info(x; δ = 5)
(discrete p(x; δ)) · · ·

pd-info(x; δ = 100)
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Table S4 Case Study results. For each case study and method, mean proportion of maximum number of rejections by any method at
α = 0.05, as shown in the left panel of Figure S15. Range is given in parentheses. A ‘-’ indicates that the method was not applied to the
specified case studies.

Method GWAS RNA-seq ChIP-seq GSEA Microbiome scRNA-seq
ashq 0.9 (0.79-1) 0.73 (0.47-1) - - - -
fdrreg-t 0.69 (0.66-0.72) 0.48 (0.42-0.55) - - - -
fdrreg-e 0.78 (0.71-0.84) 0.52 (0.04-1) - - - -
lfdr 0.96 (0.91-1) 0.57 (0.56-0.57) 1 (1-1) 0.98 (0.95-1) 0.98 (0.96-1) 1 (0.96-1)
adapt-glm 0.34 (0-0.69) 0.47 (0.38-0.56) 0.58 (0.19-0.93) 0.5 (0-1) 0.41 (0-1) 0.87 (0.61-1)
bl 0.64 (0.57-0.7) 0.45 (0.4-0.49) 0.64 (0.28-0.92) 0.65 (0.51-0.79) 0.78 (0.22-1) 0.88 (0.63-1)
qvalue 0.63 (0.55-0.7) 0.44 (0.4-0.48) 0.61 (0.28-0.92) 0.61 (0.48-0.75) 0.7 (0.06-1) 0.84 (0.59-1)
ihw 0.79 (0.73-0.84) 0.45 (0.41-0.48) 0.48 (0.12-0.82) 0.63 (0.61-0.65) 0.65 (0.34-0.92) 0.68 (0.5-0.78)
bh 0.62 (0.54-0.69) 0.39 (0.38-0.4) 0.44 (0.06-0.82) 0.5 (0.44-0.55) 0.53 (0.04-0.92) 0.64 (0.45-0.77)
bonf 0.17 (0.15-0.18) 0.08 (0.04-0.11) 0.16 (0-0.32) 0 (0-0) 0.16 (0-0.46) 0.16 (0.07-0.23)
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1 Supplementary in silico experiment results
Here we summarize the benchmarking results of fdrreg-e, which was excluded from the main results due to its
unstable and often inferior performance compared to its counterpart fdrreg-t. The difference between these two
implementations of FDRreg is that fdrreg-t assumes the null distribution of test statistics is standard normal,
while fdrreg-e estimates the null distribution of test statistics empirically. We find this estimation procedure to
be sensitive to settings of the distribution of effect sizes and proportion of non-null tests in particular.

1.1 Summary of fdrreg-e performance
We found that while modern FDR methods generally led to a higher true positive rate (TPR), or power, in
the in silico experiments and simulations, fdrreg-e was sometimes as conservative as the Bonferroni correction
(Figure S3). The increase in TPR of fdrreg-e sometimes showed substantial improvement over modern methods
in several simulation settings (Figures S3, S4, S5, S6, S7, S8). However, these gains were often accompanied by
a lack of FDR control, highlighting the sensitivity of fdrreg-e to underlying model assumptions.

1.1.1 Number of tests
We observed that the FDR control of fdrreg-e was sensitive to the number of tests in simulation. Specifically,
FDR was substantially inflated when fdrreg-e was applied to fewer than 1,000 tests (Figure S4C). FDR control
generally improved as the number of tests increased.

1.1.2 Proportion of non-null tests
The performance of fdrreg-e was particularly sensitive to extreme changes in the proportion of non-null tests.
In simulations, fdrreg-e exhibited inflated FDR when the proportion of non-null hypotheses was near 50%
(Figure S4E), and suffered from low TPR when there were more than 20% non-null hypotheses, excluding
settings where the FDR was not controlled (Figure S4F). In the yeast in silico experiments, we also observed
that fdrreg-e was more conservative when the proportion of non-null genes was 30% compared to when it was
7.5% (Figure S3). Similar results were also observed in a series of simulations where unimodal effect sizes were
used when the proportion of non-null tests was increased from 10% (Figure S7) to 25% (Figure S8).

1.1.3 Distribution of test statistics
We observed that the performance of fdrreg-e declined when the normality assumption of the test statistic was
violated (Figure S6B-C). FDR was considerably inflated when it was applied to t-distributed test statistics. As
expected, the increase in FDR was greater for the heavier-tailed t distribution with fewer degrees of freedom
(Figure S6B).

1.1.4 Distribution of effect sizes
In addition to distributional assumptions on the test statistic, empirical FDRreg requires distributional assump-
tions on the effect size. Specifically, the empirical null framework used in fdrreg-e relies on [14] to estimate the
distribution of null test statistics which requires that all test statistics with values near zero are null, referred
to as the ‘zero assumption’. If this is not true, as is the case when the effect sizes are unimodal, the estimation
of the null distribution is unidentifiable and may become overly wide, resulting in conservative behavior.

To investigate the sensitivity of these methods to the distribution of effect sizes, multiple distributions of
the effect sizes were considered in both yeast in silico experiments and simulations. Both unimodal effect
size distributions and those following the assumption of fdrreg-e, with most non-null effects greater than zero
(Figure S6A), were considered. While most simulations included the latter, simulations were also performed with
a set of unimodal effect size distributions described in [2] (Figure S7 and S8). In the yeast in silico experiments,
two conditions were investigated - a unimodal and a bimodal case.

As expected, we observed that when the zero assumption of empirical FDRreg is violated, fdrreg-e was more
conservative in both the yeast in silico experiments (Figure S3) and in simulation (Figures S7 and S8).

We also note that while it is simple to check distributional assumptions on the overall distribution of test
statistics or effect sizes, in practice it is impossible to check the distributional assumptions of empirical FDRreg
under the alternative, since they rely on knowing which tests are non-null.
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2 Supplementary case study results
To illustrate what types of covariates may be informative in controlling the FDR in different computational
biology contexts, we compared the methods using six case studies including genome-wide association testing
(Section 2.1), gene set analysis (Section 2.2), detecting differentially expressed genes in bulk RNA-seq (Sec-
tion 2.3) and single-cell RNA-seq (Section 2.4), differential binding in ChIP-seq (Section 2.5), and differential
abundance testing in the microbiome (Section 2.6). Here we provide additional results for each case study
to complement the summary provided in the main text. For full details of the analyses and results, refer to
Additional files 21-41.

2.1 Case-study: Genome-Wide Association Studies
Genome-Wide Association Studies (GWAS) are typically carried out on large cohorts of independent subjects in
order to test for association of individual genetic variants with a phenotype. The genetic variants are generally
measured using microarrays containing probes for up to several million Single Nucleotide Polymorphisms (SNPs).
These SNP probes target single base-pair DNA sites that have been shown to vary across a population. To boost
power, meta-analyses of GWAS group together many studies, commonly including hundreds of thousands to
millions of SNPs, with heterogeneous effect sizes and a wide range of sample size at each loci.

We analyzed a GWAS experiment that carried out a meta-analysis of hundreds of thousands of individuals for
more than two million SNPs for association of genetic variants with Body Mass Index (BMI) [15]. As informative
covariates, we considered (1) the minor allele frequency (MAF), or the proportion of the population which
exhibits the less common allele, and (2) the number of samples for which each SNP was tested for association
in the corresponding meta-analysis. In total, 196,969 approximately independent SNPs (out of 2,456,142) were
included in the FDR analysis.

For each covariate, we examined whether its rank was associated with the p-value distribution. As expected,
larger values of the sample size resulted in an enrichment for smaller p-values. Additionally, intermediate values
of the MAF were associated with an enrichment for smaller p-values. This is expected since an MAF near 0.5
balances the number of samples with each allele, thereby maximizing power to detect a difference. For both
covariates, the distribution of moderate to large p-values appeared uniform and independent of the value of the
covariate. For methods that include a covariate, similar numbers of SNPs were rejected at the 0.05 level for
either covariate.

For both informative covariates, we found lfdr, ihw, and fdr-e rejected the largest number of hypotheses,
followed by fdr-t. The sample size covariate appeared to be more informative than MAF for lfdr and ihw, as
both methods rejected more than ashq, whereas ashq found more discoveries than all covariate-aware methods
that used MAF. Neither covariate seemed to be very informative for bl, as it did not have much gain over bh
or qvalue. adapt-glm was more conservative than Bonferroni with the MAF covariate, but was ranked above bl
using the sample size covariate. The overlap among the methods was high, with the largest set sizes containing
SNPs rejected by all methods except Bonferonni and/or adapt-glm for both covariate comparisons. The next
largest set size was the SNPs rejected by ashq exclusively.

2.2 Case-study: Gene set analyses
Gene set analysis is commonly used to provide insights to results of differential expression analysis. These
methods aim to identify gene sets such as Gene Ontology (GO) categories or biological pathways that exhibit a
pattern of differential expression. One class of methods, called overrepresentation approaches, test each gene set
for a higher number of differentially expressed genes than expected by chance [16]. Another class of methods,
called functional class scoring approaches, test each gene set for a coordinated change in expression [16]. While
the former operates on a list of differentially expressed genes and does not consider the magnitude or direction
of effect, the latter uses information from all genes, and can even detect small coordinated changes across many
genes that are not significantly DE individually. We investigated the use of an informative covariate in GOseq
[17], an overrepresentation test, as well as Gene Set Enrichment Analysis (GSEA) [18], a functional class scoring
approach. Since the sizes of gene sets differ substantially and these size differences translate into differences in
power, we hypothesized that multiple-testing correction in gene set analysis would benefit from methods that
incorporate information about set sizes.

We used two RNA-seq datasets that investigated gene expression changes (1) between cerebellum and cerebral
cortex [19] and (2) upon differentiation of hematopoietic stem cells (HSCs) into multipotent progenitors (MPP)
[20]. We obtained 9,853 and 1,336 differentially expressed genes with FDR below 0.10 (using BH) for the human
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and mouse datasets, respectively. We observed that for both GSEA and GOseq larger gene sets were more likely
to have smaller p-values than smaller gene sets. Thus, the covariate was informative. In addition, the covariate
appeared to be independent under the null hypothesis for GSEA, as evaluated by the histogram of p-values
stratified by gene set size bins. However, upon evaluation of the stratified histograms of GOseq p-values, we
observed that the distribution of p-values in the larger range was quite different for different covariate bins.
This suggests that gene set size is not independent under the null hypothesis for GOseq, so the assumptions of
methods which use an independent covariate are violated. Thus, we do not include the GOseq method in the
benchmarking study and instead proceed with GSEA p-values only.

In this case study, we excluded the methods fdrreg-e, fdrreg-t, and ashq since they require standard errors and
test statistics that GSEA does not provide. Overall lfdr, bl, and ihw rejected more hypotheses compared to the
other methods. However, the ranking among these methods was not the same between the different datasets.
Fort the mouse dataset, lfdr found the most rejections at smaller α levels (less than 0.05), but adapt-glm found
the most at higher α levels. This was followed by BL, qvalue, and then IHW. For the human dataset, lfdr found
the most rejections at all α levels, followed by IHW and then BL, and adapt-glm was more conservative than BH
for almost all α levels. As expected, performance using the random (uninformative) covariate of BL and IHW
was almost identical to qvalue and BH, respectively. However, the adapt-glm using the uninformative covariate
was quite different in the two datasets, with no rejections in the human, and more rejections than any other
method in the mouse (at α > 0.05).

2.3 Case-study: Differential gene expression in bulk RNA-seq
High-throughput sequencing of mRNA molecules has become the standard for transcriptome profiling. A central
analysis task is to determine which genes are deferentially expressed between two biological conditions. Statistical
models have been established to address this question including DESeq2 [21] and edgeR [22]. These methods
return per gene p-values that are further adjusted for multiple testing, typically using the Benjamini-Hochberg
procedure.

We assessed the performance of modern FDR methods in the context of differential expression on two RNA-
seq datasets. The first dataset consisted of two tissues of 10 individuals from the GTEx project and the second
dataset consisted of a mouse knockdown experiment of the microRNA mir200c. For FDR methods that can use
an informative covariate, we used mean expression across samples. We confirmed that this covariate was indeed
informative for both datasets.

For the GTEx dataset, ashq found more rejections than any other method. At a FDR of 10%, the number
of rejections of ashq was more than twice the number of rejections from any of rest of the methods, and the
largest gene set was the set of genes found by ashq and no other methods. Following ashq, lfdr, adapt-glm, and
fdrreg-t performed similarly. bl found almost the same number of rejections as qvalue, and ihw found slightly
more than bh. fdrreg-e was as conservative as Bonferroni. The ranking of the methods based on the number of
rejections was consistent across different strata of the covariate.

For the mir200c dataset the ranking of the methods was very different compared to the GTEx dataset. Here,
fdrreg-e found the most rejections by far, and the largest gene set was the set of genes found by fdrreg-e and no
other methods. The next highest ranking methods were lfdr, ihw, and ashq, followed by bl, qval, bh, fdrreg-t,
and adapt-glm which all performed similarly. For this dataset, the ranking of methods changed substantially
across strata of the covariate. For example, among the hypothesis falling between the 50th and 75th percentile of
the covariate, lfdr was ranked second (the next highest ranked method after fdrreg-e) but among the hypothesis
between the 75th and 100th percentile of the covariate, ashq was ranked second.

2.4 Case-study: Differential gene expression in single-cell RNA-seq
Over the past 5 years, breakthroughs in microfluidics and droplet-based RNA capture technologies have made
it possible to sequence the transcriptome of individual cells rather than populations of cells. Quantification
of single-cell RNA-seq (scRNA-seq) reads results in a matrix of counts by cells for each sample. The primary
applications of scRNA-seq have been in describing cellular heterogeneity in primary tissues, differences in cellular
heterogeneity in disease, and discovery of novel cell subpopulations. Differential gene expression of scRNA-seq is
used to determine gene sets which distinguish cell populations within the same biological condition, and between
cell populations in different samples or conditions.

In this case-study, we examined differences in gene expression in two different biological systems. First, we
detected differentially expressed genes between neoplastic glioblastoma cells sampled from a patient’s tumor core
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with those sampled from nearby peripheral tissue [23]. In addition, we also detected differentially expressed genes
between murine macrophage cells that were stimulated to produce an immune response with an unstimulated
population [24]. We carried out differential expression analyses using two different methods developed for scRNA-
seq: scDD [25] and MAST [26], as well as the Wilcoxon Rank-Sum test.

We examined the mean nonzero expression and detection rate (defined as the proportion of cells expressing a
given gene) as potentially informative covariates. For both datasets and all three differential expression methods,
we found that mean nonzero expression and detection rate were both informative and approximately independent
under the null hypothesis, satisfying the conditions for suitability of inclusion as an informative covariate for
controlling FDR. All methods returned more rejections of genes with high nonzero mean and detection rate.
They also tended to slightly favor genes with extremely low detection rate.

Across datasets, covariates, and differential expression tests, lfdr usually found the most rejections, followed
by bl and adapt-glm. However, at smaller α values, adapt-glm was one of the most conservative methods. The
ihw and qvalue methods were next, with their rank dependent the dataset and differential expression test used.
While a gain in rejections for ihw over bh was apparent in the human dataset, the performance of ihw was very
similar to bh in the mouse dataset.

2.5 Case-study: Differential binding in ChIP-seq
ChIP-seq has been widely used to detect protein binding regions and histone modifications in DNA. Testing
difference of ChIP-seq signals between conditions usually contains two steps: firstly, defining sets of regions for
which the ChIP-seq coverage are quantified; secondly, comparing quantified coverages for testing the statistical
significance of differential binding regions. In the first step, regions can be defined by peak calling from samples,
based on their signal in sliding windows [27], or by a priori interest. In this study we benchmarked results from
the latter two approaches by analyzing H3K4me3 data from two widely studied cell lines. Because H3K4me3 is
an active marker of gene expression, its signal is most active in promoter regions. This allowed us to pursue an
analysis of promoters as regions of interest. We also benchmark the results using the sliding window approach
csaw to define de novo regions on the H3K4me3 dataset as well as an additional dataset comparing CREB
protein binding (CRB) in wild-type versus knock-out mice. We exclude ashq and FDRreg methods from the
sliding window analyses since csaw does not provide a standard error or test statistic.

Based on observations that differentially bound peaks tend to have higher coverage, we investigated the use
of mean coverage as an informative covariate. In the promoter analysis, the p-value histograms showed that
high coverage groups are more highly enriched for significant p-values different, suggesting mean coverage is
an informative covariate. Likewise, we observed that wider windows in the de novo analysis tend to have more
significant p-values. The distribution of p-values under the null in both cases appeared approximately uniform.

In the promoter analysis, ashq detected the highest number of differential binding regions by far, followed
by lfdr, fdrreg-t, bl, qvalue, and adapt-glm, which all performed similarly. In the sliding window analyses, lfdr
rejected the most hypotheses in both datasets, followed by adapt-glm, bl, and qvalue, which performed similarly
to one another. In both datasets, the next lowest methods were ihw and bh, where the advantage of ihw only
observed in the CBP csaw analysis. Finally, fdrreg-e was more conservative than Bonferroni in the promoter
analysis.

2.6 Case-study: Differential abundance testing and correlations in microbiome data analysis
16S rRNA sequencing provides an overview of the microbial community in a given sample, and is a common
and accessible way to identify relationships between microbial communities and phenotypes of interest. For
example, differential abundance testing is often used to identify bacterial taxa which are enriched or depleted
in a disease state, and non-parametric correlations between taxa abundances and phenotypes can be calculated
when phenotypes of interest are continuous (e.g. body mass index). However, 16S rRNA datasets are high-
dimensional, noisy, and sparse, and biological effects can be weak, complicating many statistical analyses and
limiting power to detect true associations [28, 29]. Furthermore, environmental samples tend to have many
thousands of taxa, which further complicates our ability to identify significant associations

We performed differential abundance tests on the OTU and genus levels for three different datasets from
the microbiomeHD database: (1) obesity, where we do not expect a large disease-associated signal [28, 30], (2)
inflammatory bowel disease (IBD), which seems to have an intermediate number of disease-associated bacteria
[31, 32], and (3) infectious diarrhea (Clostridium difficile (CDI) and non-CDI), where the disease-associated
signal is very strong [32, 33]. We also performed Spearman correlation tests between OTU relative abundances
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and the respective values of three geochemical variables, measured from wells from a contaminated former S-3
waste disposal site in the Bear Creek watershed in Oak Ridge, Tennessee, part of the Department of Energy’s
Oak Ridge Field Research Center [34]. The geochemical variables were chosen based on their ability to be
predicted by the microbial community in [34]: pH, Al, and SO4, where we expect strong, intermediate, and
weak associations with the microbial abundances, respectively.

We examined the ubiquity (defined as the proportion of samples with non-zero abundance of each taxa) and
mean non-zero abundance of taxa as potentially informative covariates. We found that ubiquity was informative
and approximately independent under the null hypothesis, satisfying the conditions for suitability of inclusion
as an informative covariate for controlling FDR. Mean non-zero abundance appeared less informative than
ubiquity, as it typically showed a less striking pattern in diagnostic plots of p-values by covariate value.

OTU-level differential abundance analyses did not have sufficient power to detect any significant differences
in the IBD, CRC, and obesity datasets. Similarly, no OTUs correlated with SO4 levels and ubiquity was not
informative in this case. In addition, very few rejections were found in the CRC dataset at the genus level.
Consequently, ubiquity was not informative in these “null” analyses and almost all FDR-correction methods
found no significant associations. These “null” results are excluded from the results in the main text.

For the other analyses (genus-level differential abundance, OTU-level differential abundance in diarrhea, OTU-
level correlation analyses for pH and Al), ubiquity was informative and the FDR-correction methods which
incorporated this information tended to recover more significant associations than naive methods. When there
were enough tests for it to be applied, lfdr typically found the most rejections. This was usually followed by bl
and qvalue, with the gain of bl over qvalue variable by dataset. In the correlation analyses, however, ihw found
more rejections than bl and qvalue. The performance of adapt-glm was usually highly variable, both within
a dataset and across datasets: it either had a very different ranking at different α levels (obesity), found the
among the most rejections (correlation of pH), or found no rejections at all (IBD, CRC). In cases with very few
tests (e.g. genus-level analyses), ihw used only 1 covariate bin and reduced to bh as expected.
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