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Appendix B 

Additional method elements (parts A and B) 

 

A) The space-time point process likelihood 

As explained by Johnson et al. (2013), I used the Berman and Turner (1992) quadrature of the 

space-time point process likelihood. 

𝐿(𝜽) = ∑𝑞𝑗𝑘 ∙ [𝑧𝑗𝑘 ∙ log 𝜆 (𝒓𝑗𝑘 , 𝑡𝑗|𝑹𝑡𝑗−1) − 𝜆 (𝒓𝑗𝑘 , 𝑡𝑗|𝑹𝑡𝑗−1)]

𝑗,𝑘

 

where 𝜆 is called the conditional intensity function, {𝑡𝑗; 𝑗 = 1… 𝐽} contains the timestamps of 

the tracking data, augmented with a large number of temporal quadrature points, {𝒓𝑗𝑘; 𝑗 =

1… 𝐽, 𝑘 = 1…𝐾} contains the observed locations augmented with a large number of spatial 

quadrature points, 𝑞𝑗𝑘 is the volume surrounding quadrature point (𝒓𝑗𝑘 , 𝑡𝑗), 𝑧𝑗𝑘 = 1 𝑞𝑗𝑘⁄   if (𝒓𝑗𝑘 , 𝑡𝑗) 

corresponds to an observation, 0 otherwise, and 𝜽 denotes the parameters to be estimated.  

In our case, the conditional intensity function was 𝜆(𝒓, 𝑡|𝑹𝑡−1) = 𝑊(𝒓|𝑹𝑡−1, 𝑡)𝑔𝑎(𝒓|𝑹𝑡−1) 

(notations as in the main text).  

To fully benefit from the computing time boost made possible by the Berman and Turner 

quadrature, I approximated the availability function 𝑔𝑎 by a Brownian availability window with 

parameter �̃� to be estimated. Thereby, 𝜆 became a log-linear function of 𝜽, and 𝐿(𝜽) became the 

likelihood of a Poisson generalized linear model with observations 𝑧𝑗𝑘 and Iights 𝑞𝑗𝑘. I could use R (or 

any statistical software) to estimate the parameters. 

I used a resolution of 90 meters and 30 minutes for the Berman and Turner quadrature and 

assumed a maximum speed of 0.7 m/s to define the sampling window. 

 

  



B) Technical tricks 

The computational complexity of the E-AKDE bandwidth optimizer is in 𝑂(𝑄6𝑁𝑙𝑜𝑔𝑁) with a large 

multiplication factor (Appendix A), meaning that the computation would take months on a desktop 

computer. The multiplication factor could be made smaller by removing the barrier crossing feature, 

but the computing time would still be considerable. Most of the time is spent in step 2. I used a few 

techniques and approximations to tentatively reduce the computing time of step 2 to a tractable value. 

In spite of these, the computing time is still too large for widespread application, hence the suggestion 

of a simplified approach, denoted SE-AKDEc, at the end of this section. 

1) Scaling constants 

The algorithm requires the computation of scaling constants for each recorded location ri, so that the 

weighed multivariate Gaussian distributions sum to one (Appendix A). I simplified the computation by 

noting that the recorded locations came in three clusters in my application case (see next section). So, I 

computed one scaling constant per cluster instead of one per location. I computed the scaling constants 

with a numerical quadrature (e.g., Johnson et al. 2008b), by sampling 500 points from the uniform 

distribution, and 500 points from the bivariate normal distribution with mean the centroid of the 

cluster and variance the variance of the OU-p movement process as estimated at step 1. The source 

code is in Appendix D. 

2) Barrier crossing 

Preliminary analyses indicated that the most time-consuming part of the algorithm was determining 

whether a linear feature (barrier) was crossed between each pair of points considered in the algorithm. 

I devised an approximate routine that reduced the number of operations required to determine whether 

a linear feature was crossed (Appendix B), meaning that adding the border crossing feature to the 

model was not very costly anymore. The source code is in Appendix C or D. 

3) Gauss-Hermite quadrature 

Other than the scaling constants, I computed the spatial integrals in step 2 using the Gauss-Hermite 

quadrature (Appendix A), thereby obtaining an algorithm in 𝑂(𝑄6𝑁𝑙𝑜𝑔𝑁) instead of 𝑂(𝑁7𝑙𝑜𝑔𝑁). 

The source code is in Appendix D. 

4) By-passing step 2 altogether 

Given how time-consuming step 2 is, I considered a simplified alternative in which I only accounted 

for environmental interactions at the final step (step 3). In this simplified version, I ignored 

environmental interactions when I estimated the bandwidth, i.e., I applied Fleming et al. (2015) 

routine to estimate the bandwidth. In this case, I corrected for the reference function approximation 

bias after step 3. I did not account for environmental interactions when I computed the amount of bias 

to be removed. I denote the whole procedure SE-AKDEc (simplified autocorrelated kernel density 

estimator with environmental interaction and bias correction). In SE-AKDEc, I computed all the 

scaling constants (not one constant per cluster) because the need to reduce computing time was less 

acute than in E-AKDE. The source code is in Appendix C. 

 

C) Approximate routine to determine whether a linear feature is crossed 



The linear feature is represented by the thick black jagged line. I compute a spatially explicit 

variable v with value 0, 1, 2, or 3 depending on the position relative to the linear feature (different 

shading types). Determining whether the linear feature is crossed when going between two points A 

and B then becomes a simple raster manipulation in most cases.  

If vA = 2 and vB = 3, then the feature is considered crossed when going from A to B or inversely. 

Conversely, if vA = vB, vA = 1 and vB = 3, or if vA = 0 and vB = 2, then the feature is considered not 

crossed. In the remaining cases, for example if vA = 1 and vB = 2, I apply the usual geometric routine 

to determine whether the line segment [AB] intersects the linear feature.  

An important assumption of this approximate routine is that the animal will not feel the 

resistance of the linear feature on its movement if the detour to avoid crossing the feature is small 

compared to the length of the movement step. 

 

 

 

 


