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Abstract

Transcriptional co-expression networks represent the concerted gene regulation
programs by means of statistical inference of co-expression patterns. The rich
phenomenology of transcriptional processes behind complex phenotypes such as
cancer, is often captured (at least partially) in the connectivity structure of
transcriptional co-expression networks. By analyzing the community structure of
these networks, we may develop a deeper understanding of that phenomenology.
We identified the modular structure of a transcriptional co-expression network
obtained from breast cancer gene expression as well as a non-cancer adjacent
breast tissue network as a control. We then analyzed the biological functions
associated to the resulting communities by means of enrichment analysis. We
also generated two projected networks for both, tumor and control networks: The
first one is a projection to a network in which nodes are communities and edges
represent topologically adjacent communities, indicating co-expression patterns
between them. For the second projection, a bipartite network was generated
containing a layer of modules and a layer of biological processes, with links
between modules and the functions in which they are enriched; from this bipartite
network, a projection to the community layer was obtained. From the analysis of
the communities and projections, we were able to discern distinctive patterns of
regulation between tumors and controls. Even though the connectivity structure
of transcriptional co-expression networks is quite different, the topology of the
projected networks is somehow similar, indicating functional
compartmentalization, in both tumor and control conditions. However, the
biological functions represented in the corresponding modules resulted notably
different, with the tumor network comprising functional modules enriched for
well-known hallmarks of cancer.

Keywords: Breast cancer networks; Modularity; Bipartite networks; Functional
enrichment

Background
Co-expression networks are graph-theoretical constructs that represent global-level

regulatory interactions and expression patterns of genes. These are well-defined

mathematical structures amenable for systematic analysis of its global and local

properties, as well as its dynamics and functionality. The case of said networks

related to complex phenotypes such as cancer has been an area of interest in recent

times [1–3]. Modular structure [4–7] is a quite relevant feature of co-expression

networks, since it may provide some clues as to what are the actual biological
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mechanisms in complex phenotypes [8]. In the case of breast cancer deregulation,

functional biological organization has been shown to be related to network modu-

larity [9, 10]. Such community structure of gene organization is characteristic of the

different breast cancer molecular subtypes [9], so that particularities of the molec-

ular phenotypes are well represented in the modular partition of the network [11].

Transcriptional co-expression networks can be probabilistically inferred from high-

throughput gene expression data [12? ? ? ? ? –15], and provide a representation

of the expression landscape of a given phenotype. These type of regulatory net-

works consist of nodes representing genes and links representing co-expression (i.e.

strong statistical dependency) between said genes. Given a Co-Expression Network

G, composed of gene nodes and links representing co-expression between genes, it

is possible to detect non-overlapping co-expression modules (communities) due to

its topology.

The gene set of each module Mi may be tested for association to known gene-sets

of biological interest, such as biological functions, using enrichment analysis. These

associations may be represented as a bipartite graph B, with a set of module nodes

M and a set of biological functions F , with links between modules and the functions

in which they are enriched. With this in mind, it is possible to project G and B
into two new graphs GP and BP (see methods) where nodes correspond to modules

detected in the original graph G.

These two projections recover two distinct types of relationships between groups

of genes: on the one hand, whether different groups of genes have a level of co-

expression that may be driven by biological factors, such as co-regulation; and on

the other hand, whether different groups of genes are involved in the control of

biological functions that are necessary for a given biological context (for instance,

a phenotype). An interesting case is that of modules that are co-regulated and

connected through shared biological functions.

In this work, we analyze two coexpression networks derived from basal breast

cancer (tumors) and healthy breast tissue (controls), and explore the two modular

projections described. We identify the differences in modular structure between the

two phenotypes, and how these different modular structures differ in terms of the

two types of intermodular relationships that we have described.

Methods
Network inference

Co-expression networks were reconstructed from gene expression data. Basal breast

cancer gene expression data, along with adjacent normal expression data, were ob-

tained from the Cancer Genome Atlas [16]. Data acquisition, and pre-processing

is described in [17]. Briefly, we used 142 Basal-like subtype breast cancer samples,

along with 101 solid-tissue adjacent normal samples. 15,642 annotated genes were

included in each sample, after removal of low-counts transcripts (< 5 per sample).

This set of un-paired data were pre-processed, normalized and bias-reduced, to have



de Anda-Jáuregui et al. Page 3 of 10

a comparable set of expression data between cancer and control samples.

Mutual Information (MI) was computed using an implementation of the ARACNE

algorithm for all gene pairs [18]. A suitable MI threshold was selected based on the

following criteria:

• At least 80% of nodes in the genome (out of 15,642) must be present in the

network by being connected to at least one other gene

• The network must have a giant connected component (i.e., the largest con-

nected component with more than half of the nodes)

• The highest (most restrictive) MI threshold must be selected

We evaluated different MI threshold values related to quantiles of the MI distribu-

tion. Generated networks were imported as igraph for [R] objects. igraph version

0.71 and R version 3.5.1 were used.

::::::
Mutual

:::::::::::
information

::
is
::::

the
::::::::::
maximum

:::::::::::::::::
entropy/maximum

:::::::::
likelihood

:::::::::
estimate

::
of

::::::::
statistical

:::::::::::
dependence

:::::::
between

::::
two

:::::::
random

::::::::
variables

::::
[19].

::
It
::
is

::::::
indeed

::
a

:::::::::::
symmetrized

::::::
version

::
of

::::
the

::::::::::::::
Kullback-Leibler

::::::::::
divergence

::::::::
between

:::
the

::::
joint

::::::::::
probability

:::::::::::
distribution

::
for

::::
two

:::::::::
variables

::::
and

:::
the

::::::::
product

::
of

:::::
their

:::::::::
marginals

::::::::
[20] (i.e.

:::
the

:::::
joint

::::::::::
probability

::::::::::
distribution

::::::
under

::::::::::::
independence

:::::::::::
conditions).

:::::
Being

::
a
:::::::::
maximum

:::::::
entropy

::::::::
estimate

::
it

:::::
needs

::::
the

:::::
least

:::::::
number

:::
of

:::::::::::
assumptions

::::
on

:::
the

:::::::::::
probability

::::::::::::
distributions.

:::::::
Indeed

:::
the

:::::
only

:::::::
needed

:::::::::::
assumption

::
is

:::::
that

:::::
these

::::::::::::
distributions

:::::
have

:::::::::
compact

::::::::
support.

:::::
Other

::::::::::
correlation

:::::::::
measures

::::::::
assume

::::::::::
identically

::::::::::
distributed

:::::::::
variables,

::::::::
linearity

:::
or

::::
rank

::::::::
ordering

::::::
among

::::::
them,

:::
etc.

:::::
Such

:::::::::::
assumptions

::::
are

:::::
often

:::
not

:::::::::
compliant

:::::
with

:::
the

::::::
nature

::
of

::::
gene

::::::::::
expression

::::
data

:::::
such

::
as

::::::::::::
nonlinearity,

:::::::
’delays’

::::
(i.e.

::::::::::
correlation

::::::
shifts),

:::
and

:::
so

:::
on.

::::
For

:::::
these

:::::::
reasons,

:::::::
mutual

:::::::::::
information

:::
has

:::::
been

::::::::::
thoroughly

:::::
used

:::
for

:::
the

::::::::
inference

::
of

:::::::
(large)

::::
gene

:::::::::::::
co-expression

:::::::::
networks.

::::::::
Another

:::::::::
advantage

:::
of

:::
the

::::
use

::
of

::::::
mutual

:::::::::::
information

::::::::
measures

:::
to

::::::::::
deconvolute

:::::
gene

:::::::::
regulatory

::::::::
networks

:::::
from

:::::::
massive

::::
gene

:::::::::
expression

:::::
data

::
is

:::
the

::::
fact

:::::
that,

::
in

:::::
most

:::::
cases

::::::::::
(whenever

::::::::::::::::::
Hammersley-Clifford

:::::::::
conditions

:::::::
apply),

::::
the

::::::::
resulting

:::::::
graphs

:::::
meet

::::
the

::::::::::::
requirements

:::
to

:::::::
belong

::
to

::::
the

:::::
family

:::
of

:::::::
Markov

:::::::
random

::::::
fields,

:::::::::
something

::::
that

::::::
under

:::::
some

::::::::
scenarios

:::::
may

::
be

:::::
quite

:::::
useful

::::
[21].

:::
The

::::::
major

:::::::::
drawback

:::
for

::::
the

:::
use

:::
of

:::
the

:::::::
mutual

:::::::::::
information

:::::::::
approach

::
is

:::
the

::::
fact

::::
that

::::
one

:::::
needs

::
a
::::
way

:::
to

:::::::::::
reconstruct

:::
the

:::::::::::
probability

:::::::::::
distributions

:::::
from

:::::::::
empirical

::::
data.

::::::
Even

::::::
under

::::
the

:::::::::
relatively

:::::
’soft’

::::::::::
conditions

:::::::::
imposed

:::
by

::::::::::::::::
Glivenko-Cantelli

:::::::::::
convergence,

::::
this

::::::
means

:::::
that

::::
one

::::
still

:::::
have

:::
to

::::
have

::
a
:::::::::

somehow
:::::
large

::::::::
number

::
of

:::::::
samples

::::::
(more

:::::
than

::::::::
approx.

::::
100

:::
for

::::
the

:::::
case

::
of

:::::
gene

::::::::::
expression

::::::
data)

:::
for

::::
the

::::::::
empirical

:::::::::::
distribution

::
to

:::
be

:::::
useful

::
in

:::::
order

:::
to

::::::::
minimize

:::
the

:::::::
number

::
of

:::::
false

::::::::
positives.

:::::
These

::::::::::
conditions

:::
are

:::::::
fulfilled

:::::
here.

:

Module detection and enrichment

Modules where detected using the Infomap [22–24] implementation for igraph,

using 1,000 iterations to achieve convergence. We then associated the sets of genes

that are identified through the module detection algorithm, to biological functions,

a process known as enrichment analysis.
::::
have

::::::
chosen

:::
the

::::::::
Infomap

::::::::::
algorithm,

::::
since

::
it

:::
has

::::::
proven

:::
to

::
be

::::::
highly

:::::::
efficient

:::::::::
compared

:::
to

:::::
other

::::::::
methods.

::::::
Based

:::
on

:::::::::::
benchmarks,
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:::::::
Infomap

::::
was

::::
the

:::::
best-

::::::
ranked

::::::::
method

::
in

::::::::
runtime,

::::::::
accuracy

::::
and

::::::::::::
performance

::::
[25],

::
as

::
it

::::
was

:::::::
assessed

:::
in

:::::
terms

:::
of

:::
the

:::::
LFR

::::::::::
benchmark

::::
[26].

The field of enrichment analysis includes a wide variety of techniques [? ]. In

this work we used an Over Representation Analysis, in which a hypergeometric (or

Fischer exact) test is used to identify a statistically significant association between

each module’s gene set, and the sets of genes involved in biological functions as

described by the Gene Ontology (GO) database [27].

Each module gene set was tested for enrichment of GO
::::
Gene

:::::::::
Ontology

::::
[27] terms

via hypergeometric testing using the HTSanalyzer [28] package for R. GO terms

were considered enriched if they had an adjusted Benjamini-Hochberg [29] p-value

smaller than 0.05. Enrichment relationships found were represented as a bipartite

network, with a layer of modules and a layer of GO terms.

Figure 1 presents a pictorial abstraction of this process. Panel A represents module

detection of G using Infomap. In panel B modules detected in panel A become

nodes in the GP projection; links represent intermodule connections. Enrichment of

modules (i.e. the B network) detected in panel A is presented in panel C. The three

modules are connected to turquoise diamonds, which represent biological processes

associated to said modules. Panel D shows a projection BP of B in which nodes are

modules linked if they share a biological process.

GP and BP projections

Topological and functional neighborhoods define two projections GP and BP as

previously mentioned. The first projection, GP, is a graph where nodes are modules

M , and links exist between modules Mi and Mj if there are links in G between

genes in Mi and genes in Mj : we say these modules are topologically adjacent in

the original network.

The second projection, BP, is a graph where nodes are modules M and links exist

between Mi and Mj if there is overlap in the neighborhoods of Mi and Mj in B:

we say that these modules are functionally adjacent.

Results
Co-expression networks for breast cancer and adjacent normal

Networks were generated from the tumors and control datasets. After scanning dif-

ferent threshold values for mutual information (see Additional File 1) the highest

threshold for MI that covered our criteria was found at the 0.999 quantile. These

networks are described in Additional File 2. Figure 2 illustrates how different the

tumor and control networks are; this
:::::
nodes

::::
are

:::::::
colored

:::
by

:::
the

::::::::
module

::
to

::::::
which

::::
they

:::::::
belong.

::
It

::::
can

:::
be

::::::::
observed

::
in

::::
the

::::::
tumor

::::::::
network,

::::::::
modules

:::::
with

:::::
nodes

:::
of

:::
the

::::
same

::::::
color,

:::::::
whereas

:::
in

:::
the

:::::::
control

::::::::
network,

::::::::
modules

:::
are

::::
not

::::::::::
observable

::::
and

:::::
colors

:::
are

:::
less

::::::::::
separated.

:::::
This

:
is further supported by the different degree distributions

(insets of Figure 2
::::::
Figure

:
3).

Said differences can be identified even by a quick glance at the node-degree

distributions (bottom of Figure 2
::::::
Figure

:::
3;

:::
χ2

::::::
testing

::::
for

::::::::::
differences

:::
in

:::::::
discrete
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::::::::::
distribution

:::::
was

::::::::::
performed,

:::::
with

::::
the

:::::::::
following

:::::::
results:

:::::::::::
χ2-statistic

:::::::::::
= 1074170,

::::::::::::::::::::
p− value = 4.99e− 10), as well as by the observation of the force-directed net-

work visualization. The control network is characterized by a mono-scaled regime

(the degree distribution appears to follow a power-law with a single scaling expo-

nent over the whole range of degree values) whereas the tumor network presents an

evident crossover phenomenon leading to multi-scaling, i.e. the degree distribution

does not follow a power-law with a single scaling exponent, but rather it seems to

have several different scaling regimes, with regions containing inflection points in

so-called crossover regions.

Modular structure of breast cancer and healthy breast networks

Distinct modular structures were found in each network, in agreement with pre-

vious results from our group [10]. The partition for the tumor network has a

smaller description length L [23] value (L = 8.268641) than the control network

(L = 11.80941). In the control network, we identified 981 modules, whereas for

the tumor network we found 910 modules. Figure
::
As

::
it
::::
can

::::
also

:::
be

:::::::::
observed

::
in

::::::
Figure

:
2
::::

and
:

3
:
,
::::::
Figure

::
4
:
shows histograms of the different module sizes, showing

larger
::
the

:::::::
largest

:
modules in control network

:::
(χ2

:::::::
testing

:::
for

:::::::::
differences

:::
in

:::::::
discrete

::::::::::
distribution

:::::
was

::::::::::
performed,

:::::
with

::::
the

:::::::::
following

:::::::
results:

:::::::::::
χ2-statistic

:::::::::::
= 40324.45,

:::::::::::::::::::::
p− value = 4.99e− 10).

For each transcriptional co-expression network, we projected the modules iden-

tified in it to a GP network were adjacent modules in the original network are

found. These GPt (for tumors) and GPc (for controls) are depicted in Figure 4
:
5,

and described in Additional file 3 (modular projection parameters). There are three

main differences between these networks that may be observed: i) a characteris-

tic degree distribution for each projection (bottom of Figure 4
::::::
Figure

::
6

:::
χ2

::::::
testing

::
for

::::::::::
differences

:::
in

:::::::
discrete

::::::::::::
distribution

::::
was

::::::::::
performed,

:::::
with

:::
the

:::::::::
following

:::::::
results:

::::::::::
χ2-statistic

::::::::::
= 49532.28,

:::::::::::::::::::::
p− value = 4.99e− 10), ii) the higher edge density in GPc,

which is also related to iii) the higher link/node ratio in GPc.

Functional Enrichment

We identified a set of biological functions described as GO terms associated to

modules detected in the tumor and control networks. We represented these func-

tional associations as bipartite graphs Bt (for tumors) and Bc (for controls) that

are represented in Figure 5A
:::
7A

:
and B, with parameters described in Additional

file 4.

We identified 665 GO terms associated to Mt and 827 GO terms associated to

Mc. It is important to notice that not all modules were enriched in biological pro-

cesses; in fact, only 110 enriched modules are found in Bt and 82 enriched modules

were found in Bc. Furthermore, the set of enriched GO terms Bc and Bt are different

(with a Jaccard index of 0.34).

The projections of modules based on functional adjacency BPc and BPt are

shown in figure 6.
::::::
Figure

:::
8A

::::
and

::::
8B.

::
In

::::
the

::::::
figure,

::::::::
modules

:::
are

::::::::::
connected

::
if

::::
they
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:::::
share

::
at

:::::
least

::::
one

::::::::
enriched

:::::::
process.

:::::
Node

::::
size

::::::::::
represents

:::
the

:::::::
module

:::::::
degree.

:::::
Edge

:::::
width

::
is

:::::::::::
proportional

:::
to

:::
the

:::::::
number

:::
of

::::::
shared

::::::::
enriched

::::::::
processes

::::::::
between

::::::::
modules.

::
In

:::::
both

:::::
cases

::::::
there

:::
are

::::::
some

::::::::
modules

::::
that

::::::
share

:::::::
several

::::::::
enriched

:::::::::
processes.

:::
In

::::
BPt :::::

(8B),
::::::

there
:::
are

::::::::
clusters

::
of

:::::::::
modules

:::::::
sharing

::::
GO

::::::
terms,

::::::::
whereas

:::
in

:::
8A

::::
the

:::::::::::::::::::
compartmentalization

::
is

::::
less

:::::::
evident.

Additional file 5 shows some of the relevant parameters for these projections. It

may be observed that these projections are very sparse in terms of edges: only 51 of

Mc are connected to other modules, whereas forMt the number is 70. Importantly,

there are modules in tumor and control networks (40 and 29, respectively) that are

associated to GO terms not shared with any other module.

Discussion

Most central modules in the GP projection are the largest ones

The most central modules in both the GPc and GPt projections are also the largest

ones. In GPt, this central module has 231 genes and 5437 intra-modular links. It is

connected to 99 other modules. The most central module in GPc, has 1000 genes

and 17583 intra-modular links. It is connected to 742 other modules.

Interestingly such highly central modules are not particularly notable in terms

of their functional associations. In controls, the largest module is enriched in 6

processes of nucleic acid regulation; it is linked through processes (i.e. in BPc) to

6 other modules. For tumors, the largest module shows no statistically significant

enrichment, and therefore is not linked to any other module in the BPt projection.

Functional compartmentalization in health and disease

The bipartite graphs B are topologically similar between tumor and control; how-

ever, the enriched functions in each network are different. In both cases, the struc-

tures show star-like motives (Figure 5A and 5B
::
7A

::::
and

:::
7B), which indicate mostly

unique processes associated to a given gene module. We interpret this as evidence of

compartmentalization of regulation, where each module is controlling the activity

of independent sets of biological processes.

We observe important differences in terms of the biological processes associated

to the most connected (i.e., most enriched) modules. The two most connected mod-

ules (with 146 and 121 neighbors, respectively) in Bc are associated to metabolism

and cell cycle processes, as illustrated
:::::
Figure

::::
7A

::
as

::::
well

:::
as

:
in Additional file 6A

and 6B; meanwhile, immunity and regulation of gene expression are the associated

processes
:::::::::::::::
immunity-related

:::::::::
processes

::::
are

:::::::::
associated

:
for the two most connected

modules (with 95 and 81 neighbors, respectivel
::::::::::
respectively) in Bt, which we illus-

trate in Additional file 6C and 6D.

As it may be observed, associated processes in Bc are for maintenance, meanwhile

the processes associated to the Bt are well-known hallmarks of cancer [30]. The

identification of hallmark processes in breast cancer co-expression networks derived

from high-throughput data is consistent with recent reports by our own group.
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Most connected modules through functional adjacency are similar in health and

disease

The way modules are connected through processes is similar between health and

disease, even though the modules and functions are different. The most enriched

modules are not, however, the ones that are more connected to other modules in

terms of functional adjacency. These are, as seen in the BP projections for both

controls or tumors, of comparable sizes: 86 and 74 genes, with 356 and 361 intra-

modular links respectively. In controls, this module is enriched in 20 processes.

Through these processes, it is connected to 18 modules. It is also connected through

co-expression links, as seen in the BPc projection, to 123 other modules. Meanwhile,

the comparable module in tumors is enriched in 81 different processes, but through

these is linked to only 20 other modules. Through co-expression links, it is connected

to 123 other modules. Interestingly, again there is little overlap in the processes

associated to these modules, sharing only one function, Membrane protein complex,

a general homeostatic event.

Connections between modules through functional and topological adjacency are

seldom found

By comparing the set of links in the GP and BP projections, we may observe

that there are very few links between modules appearing in both projection. In the

case of tumors, GPt and BPt have 37 shared links (Additional file 7), whereas in

controls, GPt and BPt have 51 shared links. As such, we may observe that both

in health and disease, the connectivity patterns among gene modules in terms of

co-expression and functionality are quite different.

Conclusions
Networks of gene regulation are known to exhibit a modular behavior. The co-

expression of gene modules is a form in which cellular processes are regulated. In

this work, we demonstrate that modules in transcriptional co-expression networks

have different ways to interact, either through co-expression or through jointly regu-

lating functional processes. There are instances in which modules are connected both

transcriptionally and functionally, but these are rare. transcriptional co-expression

networks of cancer have a more modular structure than those found in health. Mod-

ules found in the health network have higher degrees, whereas modules in the breast

cancer network are less likely to have transcriptional relationships to other modules.

We observe that the set of biological functions associated to gene modules are

vastly different in breast cancer and health, with gene modules of cancer associated

to functions that drive disease, whereas gene modules in health are linked to func-

tions associated to the maintenance of homeostasis. However, we may observe that

the connectivity patterns formed by associations of gene modules and biological

functions are similar in both health and disease, which indicates that compartmen-

talization of functional regulation through gene expression remains, even though

the processes that are being regulated change.



de Anda-Jáuregui et al. Page 8 of 10

The behaviors in terms of transcriptional and functional connectivity that gene

modules in transcriptional co-expression networks exhibit, may allow for the iden-

tification of important modules in terms of either transcriptional, or functional,

importance associated to biological conditions of importance, such as cancer.
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9. Alcalá-Corona, S.A., de Anda-Jáuregui, G., Espinal-Enŕıquez, J., Hernández-Lemus, E.: Network modularity in

breast cancer molecular subtypes. Frontiers in Physiology 8, 915 (2017)
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de Anda-Jáuregui et al. Page 9 of 10

17. , , , , : . Espinal-Enriquez, J., Fresno, C.,
:
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:

Espinal-Enŕıquez, J.
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Figures

Figure 1 Graphical description of the workflow presented here. A) Module detection of tumor and
control networks using infomap. In this figure, three modules are detected.. B) Modules detected
in A) become nodes in the GP projection; the links represent intermodule connections. C)
Enrichment of modules detected in A). In this case, the three modules are connected to light-blue
diamonds, which represent biological processes associated to said modules. D) Projection of C) In
this final case, nodes are modules linked if they share a biological process. Notice that B and D
networks are not connected in the same way, despite they have the same nodes.

Figure 2 Regulatory networks corresponding to the control (panel A) and tumor (Panel B)
phenotypes. Bottom of

::::
Nodes

:::
are

::::::
colored

:::::::
according

::
to the figure present the degree distributions

for both networks
::::::
module

::
to

::::
which

::::
each

::::
node

::::::
belongs. Notice that in B, a visible modular

structure appears,
:::::::
reinforced

::
by

:::
the

:::::::::
distribution

::
of

:::::
colors, meanwhile in A the network link

distribution looks more homogeneus
:::::::::

homogeneous.

Figure 3
:::::
Degree

:::::::::
distributions

:::
for

:::
both

::::::::
networks.

:::
Red

:::
dots

::::
form

:::
the

::::::::
histogram

::
of

::::
tumor

:::::::
network,

:::::::
meanwhile

:::::
black

:::
dots

::::
take

::::::
account

::
for

::::::
control

::::::
network.

::::
Red

:::
dots

::::::
appear

::
to

:::
have

:::
two

:::::::
different

::::::
regimes,

:::
with

::
a
:::::::
crossover

::::::::::
phenomenon.

::::
Black

::::
dots,

:::
on

::
the

:::::
other

::::
hand,

::::::
appear

::
to

::::
follow

::
a

:::::::
power-law

::::
with

:
a
:::::
single

:::::
scaling

:::::::
exponent.

Figure 4 Histograms of module sizes in tumor and control networks. As it can be observed, the
largest modules correspond to the control network

:::::
(black

:::
dots

::
in

:::
the

::::
upper

:::
left

::::
part

::
the

::::::
figure).

:::
Also

:::::
notice

:::
the

::::::
different

::::::::
concavities

::
in
:::
red

:::
and

::::
black

::::::
curves.
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Figure 5 The modular network structure in tumor and control. In this case, nodes are modules
and the connections represent intermodule

:::::::::
inter-module genes connected in the original network.

A) control module network. B) Tumor module network.The bottom of the figure shows the digree
distribution of said networks.

Figure 6
:::::
Degree

:::::::::
distributions

:::
for

:::::
module

:::::::
networks

::
of

:::::
figure

:
5.
::::

Red
:::
dots

:::::::
represent

:::
the

:::::
tumor

::::::
network,

::::::::
meanwhile

::::
black

::::
dots

::
are

:::
for

:::::::
controls.

Bipartite graph of GO term enrichment in network modules. A) Control network. B) Tumor network. Notice the

similarity between these two structures (non-enriching modules and GO terms not shown).

Figure 7
::::::
Bipartite

:::::
graph

::
of

:::
GO

:::
term

:::::::::
enrichment

::
in

::::::
network

:::::::
modules.

::
A)

::::::
Control

::::::
network.

:::
B)

:::::
Tumor

::::::
network.

::
In

::::
both

:::::::
networks,

::::
grey

:::::::
diamonds

:::::::
represent

:::
the

:::::
module

::::
that

::::
have

::::::
enriched

:::
GO

::::
terms.

::::::
Colored

:::::
circles

:::::::
represent

:::
GO

::::::::
categories

::::::
enriched

:::
for

::
the

:::::
linked

:::::::
modules.

::
In

::::
some

:::::
cases,

:::
GO

:::::::
categories

:::
are

:::::::
connected

::
to
::::

more
::::

than
:::
one

::::::
module.

:::::
Colors

::
of
:::

GO
::::::::

categories
:::::::
represent

:
a
:::::
higher

::::::
category

::
in

::::
which

::::
each

:::
GO

::::
term

::::::
belongs.

:::::
Colors

::
in
::
A

:::
and

::
B

::
are

:::
not

::::::
related.

:::::
Notice

::::
that

:::
the

:::::::
categories

::
in

::
A

::
are

:::::
mainly

::::::
related

::
to

::::::::::
maintenance,

::::::::
meanwhile

::
in

:
B
::::::

(tumor
::::::
bipartite

:::::::
network)

:::
the

::::::
majority

::
of

:::::::
categories

:::
are

:::::
related

::
to
::::::::

immunity
:
a
:::
well

:::::
known

:::::::
hallmark

::
of

:::::
cancer.

Figure 8 Projection of breast cancer modules linked by shared enriched GO terms. A) Control
projection. B) Tumor projection. Modules which show enrichment, but are not connected to other
through shared enriched GO terms (29 in control, 40 in tumors) are not shown.

Additional Files
Additional file 1 — ZIP file with Analysis results for different thresholds

Includes two TXT files with tables of the analysis parameters for both tumors and controls at different MI

thresholds. The files include the threshold quantile, number of nodes, edges, components, and largest component

sizes for each quantile threshold tested.

Additional file 2 — Excel file with Topological parameters for co-expression networks

Additional file 3 — Excel file with Topological parameters for topologically adjacent module networks

Additional file 4 — Excel file with Topological parameters for bipartite networks

Additional file 5 — Excel file with Topological parameters for functionally adjacent networks

Additional file 6 — Subgraphs of bipartite networks highlighting important functions

Additional file 7 — Excel file with Shared Links between Adjacent and Functional Projections

Excel file with tho sheets with lists, for each phenotype, of links between modules found in both projections
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