Figure S1. Mass isotopomer distribution (%) of isopulegone in each leaf pair at 30 μ mol m⁻² s⁻¹ light intensity. (a) Shoot-tip culture was initiated with one developing leaf pair and after 15 days of culture, total four leaf pairs (older than 6 days) were observed. (b) Shoot-tip culture started without leaves and after 15 DALV, total three leaf pairs (older than 6 days) were observed (mean \pm standard error, n=5). Figure S2. Mass isotopomer distribution (%) of menthofuran in each leaf pair at 30 μ mol m⁻² s⁻¹ light intensity. (a) Shoot-tip culture initiated with one developing leaf pair and after 15 days of culture, total four leaf pairs (older than 6 days) were observed. (b) Shoot-tip culture started without leaves and after 15 DALV, total three leaf pairs (older than 6 days) were observed (mean \pm standard error, n=5). Figure S3. Photographs of shoot-tip culture (a) Shoot-tip culture at 15 DALV under 5 μ mol m⁻² s⁻¹ light intensity (b) Shoot-tip culture at 20 DALV under 5 μ mol m⁻² s⁻¹ light intensity (c) Overview of shoot- tip culture system inside growth chamber. Two and three leaf pairs (older than 6 days) were observed at 15 and 20 DALV, respectively. Figure S4. Mass isotopomer distribution (%) of pulegone in control shoot-tips, nurtured with unlabelled glucose as sole carbon source. Calculated label dilution in this control shoot-tips was 99.74% (after natural abundance correction) with negligible amounts of ¹³C (0.26%) was considered as an experimental or measurement error (mean ± standard error, n=5). This result remained virtually similar in control treatments within leaves of different age grown under different light intensities. Table S1. Consumption of glucose (mg) by shoot-tip culture. Glucose consumption was measured after 15 DALV growth of the shoot-tip culture under different light intensities (mean \pm standard error, n=5). | Light intensity (μmol m ⁻² s ⁻¹) | Total glucose needed (mg/shoot culture) | | |---|---|--| | | | | | 5 | 41.4±1.8 | | | | | | | 10 | 47.1±1.2 | | | | | | | 20 | 54.8±2.6 | | | | | | | 30 | 46.3±2.4 | | | | | | Table S2. Production of photosynthetic pigments and volatile terpenes in 15 days old leaves from $in\ vivo$ plants. Leaves were collected from the peppermint plant grown under natural condition (mean \pm standard error, n=5). | Metabolites | Quantity | | |---|---------------------------------|--| | Chlorophyll (mg g ⁻¹ leaf fresh weight) | | | | Chl a | 1.53 ± 0.03 | | | Chl b | 1.00 ± 0.07 | | | Total (a+b) | 2.54 ± 0.09 | | | Chl (a/b) | 1.54 | | | Carotenoids (mg g ⁻¹ leaf fresh weight) | 0.31 ± 0.02 | | | | | | | Volatile terpenes (ng mg ⁻¹ leaf fresh weight) | | | | Pinene α | 163.38 ± 27.92 | | | Sabinene | 78.90 ± 13.28 | | | Pinene β | 315.86 ± 49.07 | | | Myrcene | 90.27 ± 16.37 | | | Limonene | ne 33.70 ± 6.83 | | | 1,8-Cineole | 1110.72 ± 161.46 | | | Sabinene Hydrate | Sabinene Hydrate 271.72 ± 59.57 | | | Menthone | 9599.41 ± 2651.2 | | | Menthofuran | 2226.18 ± 346.1 | | | Isopulegone | 684.64 ± 65.57 | | | Pulegone | 2846.56 ± 262.95 | | | Germacrene D | 91.89 ± 15.84 | | | Total volatile terpene | 17513.25 ± 3333.95 | | Table S3. Photosynthetic assimilation rates of 15 days old leaves from shoot-tip cultures and normal plants. The measurements were taken using the LI-6400XT portable gas exchange system (Li-Cor Inc., Lincoln, NE, USA) (mean \pm standard error, n=5). | Light intensity (μmol m ⁻² s ⁻¹) | Assimilation rate (µmol (CO2) m ⁻² (leaf area) S ⁻¹) | | |---|---|--------------------| | | Shoot-tip cultures | Normal plants | | 5 | -0.402 ± 0.094 | -0.482 ± 0.114 | | 10 | -0.129 ± 0.089 | -0.101 ± 0.056 | | 20 | 0.433 ± 0.082 | 0.461 ± 0.123 | | 30 | 0.518 ± 0.077 | 0.661 ± 0.112 | Table S4. Details of measured amino acids and their fragments | Measured | Source | Compartments | Analysed | |----------------|--------------------------|-----------------------|------------| | amino acids | intermediate(s) | (Dersch et al., 2016) | fragments | | Tyrosine (Tyr) | Phosphoenol pyruvate and | Plastid | 364 (M-57) | | | Erythrose 4-phosphate | | | | Serine (Ser) | 3-phosphoglyceric acid | Cytosol | 362 (M-85) | | Alanine (Ala) | Pyruvate | Cytosol | 232 (M-85) | | Lysine (Lys) | Oxaloacetic acid | Cytosol | 431 (M-57) | | Proline (Pro) | α-ketoglutarate | Mitochondria | 258 (M-85) | Table S5. Label dilution (%) into monoterpene in two leaf pairs of oregano shoot-tip culture after 15 DALV under 10 μ mol m⁻² s⁻¹ light intensity. Labelled U-¹³C glucose (2%) was supplemented in the basal media (mean \pm standard error, n=5). | Leaf pair | Label dilution (%) | | |-----------|--------------------|--| | | | | | First | 1.83 ± 0.19 | | | | | | | Second | 1.36 ± 0.05 | | | | | |