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1 Average mutual information and JSD

From Eqs. (1) and (2) of the Main paper, we have that
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Then, by setting Pr[Q = 0] = Pr[Q = 1] = 1/2 and by using the fact that
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is the Jensen Shannon distance between the methylation probabilities Pr[Mk = mk | Q = 1] and
Pr[Mk = mk | Q = 0] associated with the test and reference phenotypes, respectively.

2 Test statistic as distance metric

We would like the test statistic T (q1, q2) we use for distinguishing between two phenotypes,
q1 and q2, based on their methylation states within a genomic region of interest to satisfy the
following properties: (i) T (q1, q2) ≥ 0, for every q1 and q2 (non-negativity), (ii) T (q1, q2) > 0
if and only if q1 6= q2 (positive definiteness), and (iii) T (q1, q2) = T (q2, q1), for every q1 and q2
(symmetry). Non-negativity can always be satisfied by subtracting from a test statistic its
minimum value. Positive definiteness is required to make sure that the test statistic takes its
minimum value only when the two phenotypes are the same. Symmetry assures that the test
statistic is the same irrespective of the order we use to compare two phenotypes.

In addition, we would like the test statistic to satisfy the following property (iv) T (q1, q2) +
T (q1, q3) ≥ T (q2, q3), for every q1, q2, and q3 (triangle inequality). To see why, let us assume that
DNA methylation within a genomic region does not carry, on the average, sufficient information
for distinguishing a phenotype q1 from a phenotype q2 as well as from a phenotype q3. In this
case, we also expect DNA methylation within the genomic region not to carry, on the average,
sufficient information for distinguishing q2 from q3. Specifically, we expect that T (q1, q2) ' 0 and
T (q1, q3) ' 0 implies T (q2, q3) ' 0, which is always true when T satisfies the triangle inequality.

Although the test statistic 1/K
∑K

k=1 [JSD(k)]2 we discussed in the Main paper satisfies prop-
erties (i)−(iii), it does not satisfy property (iv). However, the test statistic given by Eq. (3) of the
Main paper is a distance metric and, therefore, satisfies all four properties. This is a consequence
of the fact that T is the Euclidean norm of the vector (1/

√
K)[JSD(1), JSD(2), . . . , JSD(K)] of

JSDs within GUs with data that overlap the genomic region, the fact that the JSD is a distance
metric [2], and of the following lemma.

Lemma. Suppose that dn, n = 1, 2, . . . , N , are distance metrics and let

d(x ,y) :=


d1(x1, y1)
d2(x2, y2)

...
dN(xN , yN)

,
where x and y are vectors with components xn, yn, n = 1, 2, . . . , N . Moreover, let || · || be an
absolute norm (i.e., a norm that is invariant to taking the moduli | · | of its components, which
includes the Euclidean norm). Then ||d(x ,y)|| is a distance metric.

Proof. We must show that ||d(·, ·)|| is non-negative, positive definite, symmetric, and satisfies
the triangle inequality. Since a norm is always non-negative, ||d(x ,y)|| ≥ 0, for every x ,y , which
proves non-negativity. Since a norm is also positive definite, we have that ||d(x ,y)|| > 0 if and
only if d(x ,y) 6= 0, whereas, from the non-negativity of d(x ,y) and the positive definiteness
of the dn metrics, we have that d(x ,y) 6= 0 if and only if xn 6= yn, for n = 1, 2, . . . , N , which
proves positive definiteness. The symmetry property ||d(x ,y)|| = ||d(y ,x )|| follows from the
symmetry dn(xn, yn) = dn(yn, xn), n = 1, 2, . . . , N , of the dn metrics. This leaves us to show
the triangle inequality.
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By using the fact that a norm satisfies the triangle inequality, we have that∣∣∣∣∣∣∣∣∣
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for any x , y , z . Moreover, any absolute norm is monotonic (see Theorem 2 in [1]). This means
that ||a || ≤ ||b|| for two vectors a and b such that |an| ≤ |bn|, for n = 1, 2, . . . , N . Note now that
the distance metrics dn satisfy the triangle inequality, in which case, |dn(xn, yn) + dn(yn, zn)| ≥
|dn(xn, zn)|, for n = 1, 2, . . . , N , which, together with the monotonicity property of || · ||, implies∣∣∣∣∣∣∣∣∣
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This result, together with Eq. (S1), shows that ||d(·, ·)|| satisfies the triangle inequality. ♠

Note finally that 0 ≤ T ≤ 1, since the JSD is always a number between 0 and 1 [2].
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Figure S1. Boxplots of genome-wide distributions of JSD, MML, and NME values in the
normal fetal brain, H3.3-WT, and K27M mutant samples considered in this paper. The JSD
values show small methylation discordances associated with the fetal brain samples (which are
due to biological, statistical, and technical variability), thus confirming their appropriateness
as normal controls. Moreover, the JSD demonstrates a global increase in methylation
discordance within the tumor samples, accompanied by global hypomethylation (MML) and
gain in methylation entropy (NME) in most samples. Center lines: median; boxes:
interquartile range (IQR); whiskers: 1.5× IQR.
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Figure S2. α-centile curves, calculated for different values of α from the estimated
logitSST-based null PDF f̂0(t; s) within promoter regions, drawn over a scatter plot of 104,694
observed pairs (tk, sk) of null T statistic values tk and promoter region sizes sk. The
percentage α̂ of empirically observed data points that fall below a centile curve agrees well
with the corresponding α value, indicating that f̂0(t; s) is consistent with the data.
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Figure S3. Quantile residual analysis of the logitSST-estimated null PDF of the T statistic in
the case of promoter regions. (a) The kernel density approximation of the distribution of the
logitSST-estimated quantile residuals (bottom red marks) demonstrates close agreement with
standard normality. (b) The Q-Q plot (green marks) of the logitSST-estimated quantile
residuals against the corresponding true quantile residuals is very close to the diagonal (red)
line, suggesting a close agreement of the logitSST-estimated null PDF of the T statistic to its
true distribution.
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Figure S4. UCSC genome browser images of JSD, MML, and NME tracks within the
genomic region [chr3: 89,145,180–89,536,200] that contains EPHA3, obtained by informME in
the six H3.3-WT vs. FB1 and the seven K27M mutant vs. FB1 comparisons. Light colors
indicate small values, whereas dark colors indicate large values. The JSD tracks demonstrate
increased methylation discordance in the K27M mutant samples, which is associated with
widespread hypomethylation (MML tracks) and a gain in methylation entropy (NME tracks)
close to its maximum value.
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Figure S5. α-centile curves, calculated for different values of α from the estimated
logitSST-based null PDF f̂0(t; s) within bivalent domains, drawn over a scatter plot of 7,446
observed pairs (tk, sk) of null T statistic values tk and bivalent domain sizes sk. The
percentage α̂ of empirically observed data points that fall below a centile curve agrees well
with the corresponding α value, indicating that f̂0(t; s) is consistent with the data.
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Figure S6. Quantile residual analysis of the logitSST-estimated null PDF of the T statistic in
the case of bivalent domains. (a) The kernel density approximation of the distribution of the
logitSST-estimated quantile residuals (bottom red marks) demonstrates close agreement with
standard normality. (b) The Q-Q plot (green marks) of the logitSST-estimated quantile
residuals against the corresponding true quantile residuals is very close to the diagonal (red)
line, suggesting a close agreement of the logitSST-estimated null PDF of the T statistic to its
true distribution.
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