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Supplementary Materials 33 

 34 

Species selected and study sites 35 

In Australia, two bird species of the order Anseriformes were selected, comprising Australian 36 

shelduck (Tadorna tadornoides) and Dabbling ducks (Anas sp.), as well as two species of 37 

Charadriiformes: ruddy turnstone (Arenaria interpes) and red-necked avocet (Recurvirostra 38 

novaehollandiae). Ruddy turnstones and Anas ducks are known reservoir hosts for avian 39 

influenza A virus. In Antarctica, gentoo penguins (Pygoscelis papua) were sampled from 40 

both locations (Additional file 1: Table S1). Birds were captured either using a baited funnel 41 

walk in traps, cannon nets or mist nets (Australia) or using a hand net (Antarctica). Cloacal 42 

samples were collected using a sterile-tipped applicator. Oropharyngeal swabs were also 43 

collected for Ruddy turnstones and merged with their cloacal samples. The number of 44 

resistance genes in the microbiome of turnstones is similar to the one observed for other 45 

birds (e.g. other Charadriiformes), and therefore it is unlikely that this procedure would 46 

impact the conclusions of this study. All birds in this study, including the ones infected with 47 

avian influenza virus, were apparently healthy, with the exception of one library constructed 48 

from dead and dying Australian shelducks. These birds had symptoms of Newcastle 49 

Disease (avian avulavirus type 1), such as froth from the mouth and edema in airsacs and 50 

lungs. Although the pathogen could not be confirmed with routine Newcastle Disease Virus 51 

specific PCR methods, avian avulavirus 1 reads were identified in the meta-transcriptome 52 

library of diseased birds. 53 

Samples were collected at sites with different levels of anthropogenic impact. In 54 

Australia, birds were collected next to partially treated water (i.e. the final stage of 55 

wastewater treatment) at the Western Treatment Plant of Melbourne, which is the second 56 

largest city in Australia (37°59′11.62′′S, 144°39′38.66′′E), at Western Port Bay located 57 

~65km from Melbourne (38°13'51.6′′S 145°28'43.9′′E), at King Island in Bass Strait, 58 

Tasmania (39°55′52′′S 143°51′02′′E), and at Innamincka Regional Reserve, an isolated area 59 

in the outback of Australia (27°32′28′′S 140°35′47′′E). In Antarctica, samples were collected 60 

next to Base Bernardo O’Higgins, Kopaitik Island, Rada Covadonga (63°19’S, 57°51’W), and 61 

near the Gabriel González Videla Base, Paradise Bay (64°49’S, 62°51’W). 62 

 63 

Library preparation and sequencing 64 

RNA was extracted with the MagMax mirVanaTM Total RNA isolation Kit (ThermoFisher 65 

Scientific) using the automated KingFisherTM Flex Purification System (ThermoFisher 66 

Scientific). RNA quality was assessed using the TapeStation 2200 and High Sensitivity RNA 67 

reagents (Agilent Genomics, Integrated Sciences). Pools were constructed by selecting the 68 
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10 samples with the highest concentration and combining the RNA at equal concentrations, 69 

followed by concentrating the pooled RNA using the RNeasy MinElute Cleanup Kit (Qiagen). 70 

Libraries were constructed using the TruSeq total RNA library preparation protocol (Illumina) 71 

and rRNA was removed using the Ribo-Zero-Gold kit (Illumina). Paired end sequencing 72 

(100bp) was performed on a HiSeq2500 platform. Library preparation and sequencing were 73 

carried out at the Australian Genome Research Facility (Melbourne). The total number of 74 

reads obtained per library are reported in Additional file 1: Table S1. 75 

 76 

Data processing 77 

Low quality sequence reads, Illumina adapters and sequences shorter than 50bp were 78 

filtered out using Trimmomatic [39] as implemented in KneadData 79 

(https://bitbucket.org/biobakery/kneaddata). Host reads were filtered out using the chicken 80 

genome as reference (Gallus gallus release 90, downloaded from Ensembl), also using 81 

KneadData. Ribosomal RNA was removed with SortMeRNA based on 16S, 18S, 23S, 28S, 82 

5S and 5.8S rRNA databases [40-42]. 83 

 84 

Estimation of absolute gene abundance 85 

Read count normalization significantly affects gene expression analyses [43, 44]. Raw and 86 

relative gene expression measurements are not appropriate to compare different gene 87 

expression across libraries [45]. One option is to normalise read counts using controls (e.g. 88 

stably expressed housekeeping genes) to estimate the absolute gene abundances [45]. 89 

Absolute gene abundances were estimated using the formula: 90 

𝑅𝑃𝐾$%&
𝑅𝑃𝐾'()*

 91 

Equation 1 92 

Where RPKAMR is the antibiotic resistance gene expression in Reads Per Kilobase 93 

(RPK) and RPKhost is the expression of a stably expressed host gene.  94 

RPK is calculated as: 95 

𝑁𝑟𝑒𝑎𝑑𝑠
𝑔𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

× 	1000 96 

Equation 2 97 

Where Nreads is the number of mapped reads and gene length is the length of the 98 

gene in base-pairs. 99 
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KMA does not estimate the abundance of genes in RPK, but uses a more accurate 100 

approach. Specifically, the abundance of antibiotic resistance genes is estimated within KMA 101 

as the total number of nucleotides covering the template divided by the length of the 102 

template (this is the depth value in Additional file 1: Table S2). In this case, for example, a 103 

single read overlapping the end of a 500bp resistance gene by 50bp accounts for 0.1 depth 104 

units. If that read was counted in RPKs units, it would be equivalent to 2 RPK (equation 2), 105 

but this value is less accurate as only half of the read overlaps the resistance gene. To 106 

convert the original KMA depth counts to RPK units, and considering that the reads were 107 

100 bp long, we multiplied depth values by 10. A depth value of 0.1 becomes therefore 108 

1RPK. 109 

We chose the Ribosomal Protein S13 (RPS13), which is known to be stably 110 

expressed [46], to calculate RPKhost. A host rather than a bacterial gene is desirable for 111 

measuring the total gene burden ‘per host’, rather than ‘per bacteria’. Our assessment aims 112 

to detect a higher abundance of bacteria harbouring antibiotic resistance genes, rather than 113 

a higher abundance of genes per bacterial cell. RPS13 sequences were obtained from 114 

reference genomes of each bird order analysed here (GenBank accessions: 115 

NW_013185679, NW_008796218 and NW_009650072) and used as reference templates to 116 

count host genes. We used the intermediate files from KneadData, where the quality-control 117 

has been performed but host reads were not removed. These reads were mapped to the 118 

RPS13 references with bowtie2 [47] and the number of mapped reads was obtained with 119 

HTSeq [48]. Using the average length of the three reference RPS13 genes (617bp) as gene 120 

length, we computed RPKhost according to equation 2. 121 

Finally, we calculated normalised gene abundances, which can be used to compare 122 

libraries like absolute gene abundances, by dividing RPKAMR by RPKhost (equation 1). 123 

 124 

Sequencing depth does not confound results 125 

We performed two analyses to test whether unequal sequencing depth across libraries 126 

confounds the results. First, we tested whether sequencing depth correlates with resistance 127 

gene diversity and abundance using Pearson’s and Spearman’s correlation and found no 128 

evidence for a correlation (p > 0.05, Additional file 2: Fig. S6). Second, we used nested 129 

linear regressions to test whether adding sequencing depth as a co-variate changes our 130 

results (i.e. WWTP vs other sites as a predictor of resistance gene burden). The test was 131 

performed by fitting a linear regression model with and without library size as a confounding 132 

variable (R script available in additional file 4), and comparing the regression coefficient 133 

between these models. We found no evidence that sequencing depth affects antibiotic 134 

resistance gene burden and no evidence it confounds the relationship between outcomes 135 
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and impact of locality (Additional file 1: Table S3). The impact of locality (WWTP and other 136 

sites) on resistance gene diversity and abundance remained significant after controlling for 137 

sequencing depth. Sequence depth was fairly even across libraries (19,633,686 – 138 

23,825,333 PE reads), and these two independent tests confirm that sequencing depth does 139 

not affect our results. 140 

 141 

Assessing resistance gene diversity in individual birds using PCR 142 

Each metatranscriptome library contained 10 individual birds from the same site and 143 

species. We performed an antibiotic resistance assessment via PCR on individual birds to 144 

consider potential variation within libraries and to confirm the results of our 145 

metatranscriptome-based approach. Birds from two libraries were analysed: (i) 146 

6_Temperate_Duck_WWTP and (ii) 8_Avocet_YC (Western Port Bay). Ducks from 147 

Innamincka reserve are migrating species and because they have potentially been in contact 148 

with polluted sites they were not used as a pristine-site representative for the PCR assay. 149 

Nucleic acids were extracted using the Qiagen QiaAMP Viral RNA Extraction Kit, with no 150 

DNAse treatment. We targeted 10 resistance genes that were (i) observed in at least one of 151 

the two libraries via metatranscriptomics, and (ii) that had primers described in the PCR-152 

based resistome study of Zhu et al. 2017 [27]. Specifically, we used the following primer 153 

pairs described in Zhu et al. 2017: blaTEM, catA, cfxA, lnuB-01, lnuC, mefA, strA, tetC-01, 154 

tetQ, tetW-01. PCR was performed in 25 μL reactions containing Platinum SuperFi Green 155 

Master Mix, primers at 0.5μM and 2–7 ng of DNA. The PCR cycle consisted of initial 156 

denaturation at 98°C for 30 s, followed by 35 cycles of denaturation at 98°C for 10 s, 157 

annealing at 60°C for 10 s and extension at 72°C for 30 s, and a final extension step at 72°C 158 

for 5 m. Amplification of resistance genes was assessed in 2% agarose gels. 159 

 Seven out of the ten genes tested were successfully amplified. The blaTEM-116 gene is 160 

a known laboratory contaminant [49] that was excluded from our metatranscriptome 161 

analyses. Indeed, because we amplified blaTEM in the negative control this gene was also 162 

excluded from the analyses based on PCR products. The remaining amplified genes are 163 

listed in Additional file 1: Table S8. The diversity of antibiotic resistance genes was 164 

significantly higher (Kruskal-Wallis p=0.0023) in birds from the WWTP when individual birds 165 

are considered (Additional file 2: Fig S3). These results confirm that the metatranscriptome 166 

libraries containing 10 individual birds are accurate representations of the resistance gene 167 

pool in a given site and bird species. 168 

 169 

Bacterial load and antibiotic resistance gene burden 170 

 High bacterial abundance in the gut may be associated with an increased potential to 171 

harbour resistance genes. We tested for correlations between microbial load (measured as 172 
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the number of reads after host and rRNA were filtered out) and resistance gene burden 173 

using Spearman’s and Pearson’s correlation. No significant result (p> 0.05) was observed 174 

when using Pearson’s correlation, but Spearman’s correlation revealed a marginally 175 

significant correlation (p =  0.04) between microbial load and resistance gene abundance 176 

and number of antibiotic classes (Additional file 2: Fig. S8). This correlation is possibly 177 

driven by a small bacterial load in penguins and one of the turnstone libraries, which have 178 

few resistance genes, and a higher bacterial load in some of the duck libraries from the 179 

WWTP (Additional file 1: Table S1). This correlation does not affect the conclusions that 180 

birds from the WWTP have more resistance genes than birds from other sites. 181 

 182 

Data visualisation 183 

Patterns of gene diversity and abundance were visualized with ggplot2 [50]. To produce 184 

heatmaps comparing resistance gene expression (Additional file 2: Fig S7), 0.001 was 185 

added to all estimated abundances (to exclude zeros and perform log-transformation), the 186 

abundances were then log2-transformed and visualised with Superheat [51]. 187 

 188 

 189 

Supplementary Results and Discussion 190 

 191 

Association between resistance genes and avian infectious diseases 192 

The bird microbiome can also be affected by co-infecting pathogens, even in asymptomatic 193 

cases of avian influenza virus infection [53]. To test for an association between avian 194 

influenza virus (AIV) infection status and the resistance gene load, we compared libraries of 195 

conspecific birds collected within the same sampling period and location. Dabbling ducks 196 

(Anas sp.) that were apparently healthy but infected with AIV (low pathogenic type, clinically 197 

asymptomatic in birds) showed a higher number and abundance of resistance genes 198 

(Additional file 2: Fig. S7A, Additional file 1: Table S7). Ruddy turnstones (Arenaria 199 

interpres) infected with AIV had a lower diversity and abundance of resistance genes than 200 

their non-infected counterparts, and the overall resistance gene load was much smaller than 201 

the one observed in ducks (Additional file 2: Fig. S7A, Additional file 1: Table S7). We 202 

additionally tested for an association between resistance gene load and disease state in 203 

Australian shelducks (Tadorna tadornoides) collected from the same location and sampling 204 

expedition. Sick and dying birds (harboring symptoms consistent with Newcastle disease, a 205 

severe viral infection) had a higher diversity of resistance genes (15 genes) compared to 206 

their healthy counterparts (10 genes), but the abundance levels were similar between the 207 

two libraries (4.9 and 5.6 respectively, Additional file 2: Fig. S7B, Additional file 1: Table S7). 208 
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The few replicates analyzed here do not allow for a statistical comparison. We can 209 

therefore only speculate on the mechanisms influencing the differences in resistance gene 210 

expression across avian influenza infection and health status to raise hypothesis for further 211 

research. It is possible that similar factors may influence both resistance and viral acquisition 212 

and that the observed differences in resistance gene burden are casual rather than a causal 213 

effect of the viral infection. It is also possible that bacteria harboring antibiotic resistance 214 

have a negative impact on host health. Studies have shown an interconnection between 215 

resistance to antibiotics and endurance to host immune system in bacteria [54-57]. While we 216 

cannot derive this conclusion from our results, it is conceivable that a higher burden of 217 

resistant bacteria leads to some level of immune susceptibility, which results in birds being 218 

more susceptible to viral diseases. More studies are warranted to test whether the spread of 219 

antibiotic resistance impacts wildlife health and biodiversity loss. 220 

 221 

  222 
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Supplementary Figures 223 

 224 

 225 
 226 

Figure S1. Distribution of antibiotic resistance genes in birds foraging in a wastewater 227 

treatment plant (WWTP) compared to birds from other sites in Australia and Antarctica, 228 

considering only healthy birds and those not infected with avian influenza virus. The number 229 

of libraries from the WWTP after removing diseased and AIV+ birds precludes statistical 230 

analysis. Diversity is given by the number of unique genes. Absolute gene abundances were 231 

estimated based on a stably expressed host gene. 232 

 233 

  234 
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 235 

 236 

 237 

Figure S2. Distribution of antibiotic resistance genes in birds foraging in a wastewater 238 

treatment plant (WWTP) compared to birds foraging in sites with moderate and low human 239 

impact. Sites were defined as ‘low impact’ when isolated and/or close to settlements of <50 240 

people, ‘moderate impact’ when close to cities, small towns or agriculture (considering that 241 

agricultural runoffs contain antibiotics), and ‘high impact’ when sampled at the WWTP 242 

(considering that resistant bacteria are only partially removed during water treatment). Each 243 

dot represents a meta-transcriptome library (constructed from 10 samples). The number of 244 

libraries in each site precludes formal statistical analysis. Black lines indicate the mean 245 

values of each category. PB = Western Port Bay, Australia; KI = King Island, Australia; IN = 246 

Innamincka Reserve, Australia; OB = O'Higgins Base, Antarctica; GGV = Gabriel González 247 

Videla Base, Antarctica. 248 

 249 

  250 
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 251 
 252 

Figure S3. PCR analyses utilizing individual birds confirm that those from the WWTP 253 

harbour a higher diversity of antibiotic resistance genes. (A) diversity of resistance genes 254 

observed in birds from the wastewater treatment plant (WWTP, n=10) and from Western 255 

Port Bay (PB, n=10). Statistical significance was assessed with a Kruskal-Wallis test and 256 

differences between WWTP and pristine site were found to be significant (p-values < 0.05). 257 

(B) PCR results for two resistance genes where the higher prevalence of antibiotic 258 

resistance in the WWTP is evident. Ct = negative PCR control. ‘r’ indicates amplification of 259 

resistance genes. 260 
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 261 

 262 
 263 

Figure S4. Distribution of antibiotic resistance genes across bird orders. Each dot 264 

represents a meta-transcriptome library (constructed from 10 samples) and cross bars 265 

represent mean values. The number of penguin libraries precludes statistical analysis. 266 

  267 
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 268 

 269 

 270 
 271 

Figure S5. Principal Coordinate Analysis of the expression of metabolic pathways by  272 

the microbiome of birds from a wastewater treatment plant (WWTP) and other sites. 273 

Colours indicate the bird orders and shapes indicate collection site. 274 

 275 

 276 

 277 



 13 

 278 
 279 

Figure S6. No correlation between library size (sequencing depth) and resistance gene 280 

diversity (A), abundance (B) or number of antibiotic classes (C) was observed, indicating 281 

that library size does not impact the results. These results indicate that the higher diversity 282 

and abundance of resistance genes in ducks from the wastewater treatment plant does not 283 

result from unequal sequencing effort. Statistics were performed using Pearson’s and 284 

Spearman’s correlation, and results (non-significant, p > 0.05) are given on the top of each 285 

graph. Shaded area indicates 95% confidence interval. 286 

 287 
 288 

 289 

 290 
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 291 
 292 

 293 

Figure S7. Resistance gene expression profile varies with avian influenza infection (A)  294 

and health status (B). Resistance gene names and corresponding NCBI accession numbers 295 

are given. Shelduck = Australian shelducks. Estimated gene abundances are represented in 296 

log2 scale. No statistical tests were performed due to the small number of libraries of 297 

diseased birds and birds with avian influenza. 298 

 299 

  300 
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 301 
 302 

Figure S8. Correlation between the number of reads attributed to the microbiome (after host 303 

and rRNA filtering) and the resistance gene burden. Statistics were performed using 304 

Pearson’s and Spearman’s correlation and results are given next to each graph. Shaded 305 

area indicates 95% confidence interval. No correlation was observed when using Pearson’s 306 

test. Resistance gene abundance and number of antibiotic classes were found to correlate 307 

significantly (p = 0.04) with number of mRNA reads only when using Spearman’s correlation, 308 

which is less sensitive to outliers. 309 


