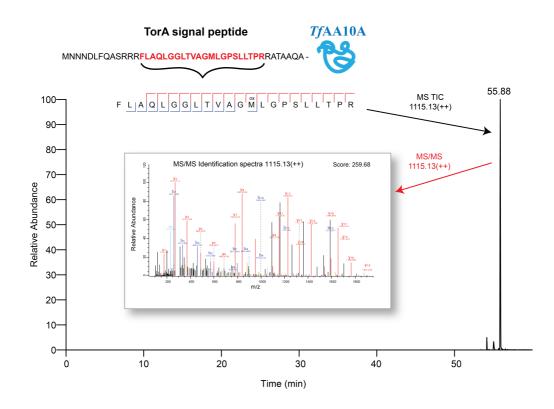

Additional File 1

Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium


D.A. Russo¹, J.A.Z. Zedler¹, D.N. Wittmann¹, B. Möllers², R.K. Singh³, T.S. Batth⁴, B. van Oort⁵, J.V. Olsen⁴, M. J. Bjerrum³ and P.E. Jensen¹

¹Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
²Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
³Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
⁴Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
⁵Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Additional File 1: Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium

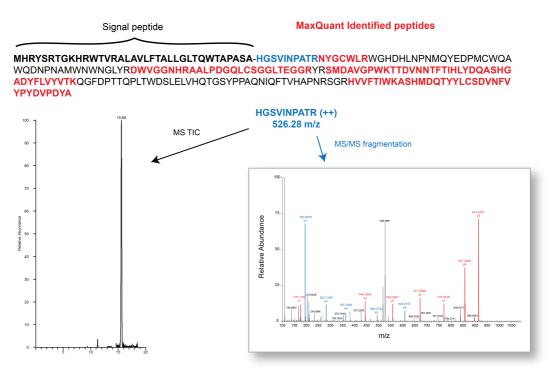


Figure S1. PCR analysis of *S. elongatus* UTEX 2973 strains *Tf*AA10A (pDAR3) and TorA-*Tf*AA10A (pDAR21). Lanes show the colonies from transformation of *S. elongatus* UTEX 2973 with plasmids pDAR3 (*Tf*AA10A), pDAR 21 (TorA-*Tf*AA10A) and an empty vector control (pDF-trc). P denotes a positive control reaction (using pDAR3 plasmid DNA), N denotes a negative control (wild-type *S. elongatus* UTEX 2973) and MQ denotes a H₂O PCR control. The following primers (5' – 3') were used for amplification of the gene of interest: trc-F (attctgaaatgagctgttga) and trc-R (atcaggctgaaaatcttctc).

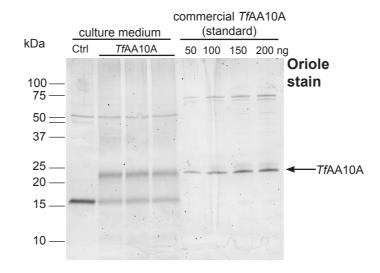


Figure S2. Identification of the TorA signal peptide in the pre-protein TorA-*Tf*AA10A, found in the plasma membrane fraction, by mass spectrometry.

Additional File 1: Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium

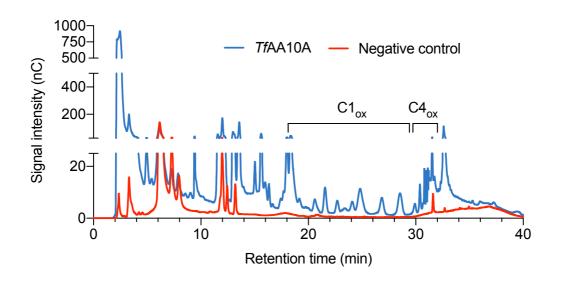


Figure S3. Identification of the secreted *Tf*AA10A by mass spectrometry. The inset highlights the identification of the mature N-terminal tryptic peptide confirming correct processing of the secreted *Tf*AA10A.

Figure S4. Densitometric analysis of secreted *Tf*AA10A. The first four lanes show culture medium loaded to an equivalent of 200 μ L of cell-free medium. The subsequent four lanes show a standard curve of 50 – 200 ng of a commercial *Tf*AA10A. The *Tf*AA10A protein is indicated with an arrow. Ctrl denotes an empty vector control (pDF-trc).

Additional File 1: Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium

Figure S5. PASC oxidation by *Tf*AA10A. *Tf*AA10A catalyzed oxidation of PASC was performed in 50 mM phosphate buffer (pH 7.5). All reaction mixtures contained 2 mM ascorbate, 0.75% w/v PASC and 2 μ g purified and reconstituted *Tf*AA10A. The negative control omitted the enzyme. Reactions were carried out at 50 °C for 24 hours. C1_{ox} – C1 oxidation products. C4_{ox} – C4 oxidation products. Results are representative of n = 3.