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1 Supplementary Methods

1.1 GTEx ∆Ψ3 and ∆Ψ5 dataset

For this benchmark, we restricted to variants that MaxEntScan can score, i.e.
variants at less than 3 nt in the exon and less than 6 nt in the intron around
donor sites in the case of Ψ3, and variants at less than 3 nt in the exon and less
than 20 nt in the intron around acceptor sites in the case of Ψ5. Furthermore,
we restricted the analysis to donor sites with only two supported alternative
acceptor sites and to acceptor sites with only two alternative donor sites,
according to the Human genome (hg19) alternative events v2.0 on the MISO
website https://miso.readthedocs.io/en/fastmiso/annotation.html.

Next, we computed Ψ3 and Ψ5 with MISO for each alternative splicing
event (with reference and alternative sequence), and averaged the Ψ3 or Ψ5

values from all samples with the same genotype. We required at least 2 sup-
porting samples for homozygous variants and at least 6 supporting samples
for heterozygous variants.

1.2 MMSplice competing splice site variants predic-
tion

We show applying MMSplice to predict variant effect on ∆Ψ5 with arbitrary
number of alternative splicing sites n ∈ {1...n}. We would like to predict
variant effect on the Ψ5 of exon i.

Ψ5alt = σ(∆ logit(Ψ5) + logit(Ψ5ref)) (1)
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We can model ∆ logit(Ψ5) as follow:
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Where Sref
j is the MMSplice score for the j-th alternative exon with reference

sequence, and Salt
j is the MMSplice score for the j-th alternative exon with

alternative sequence. logit(Ψ5ref) is the logit of the Ψ5 measured by MISO
from the reference sequence.
In the case of two alternative splice sites as considered in the GTEx data,
the above equation 2 equals to:

∆ logit(Ψ5) = (Salt
1 − Sref

1 )− (Salt
2 − Sref

2 )

= ∆S1 −∆S2

(3)

Which is the formula given in the main text.
We then calculate the predicted ∆Ψ5 as for homozygous and heterozygous
variants as follow:

∆Ψ5homo
= Ψ5alt −Ψ5ref

∆Ψ5hetero = (Ψ5ref + Ψ5alt)/2−Ψ5ref

(4)

COSSMO model was applied to the reference sequence and alternative se-
quence separately. ∆Ψ5 for homozygous and heterozygous variants are cal-
culated as):

∆Ψ5homo
= Ψ5alt −Ψ5ref

∆Ψ5hetero = (Ψ5alt + Ψ5ref)/2−Ψ5ref

(5)

Analogous equations apply to differences in Ψ3.
MaxEntScan model was applied to the reference sequence and alternative
sequence separately. MaxEntScan predicted variant effect is:

∆Ψ5homo
= (S2alt − S1alt)− (S2ref − S1ref)

∆Ψ5hetero = ((S2alt − S1alt) + (S2ref − S1ref))/2− (S2ref − S1ref)
(6)
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1.3 ClinVar variant pathogenicity prediction

To predict variant pathogenicity, every model, including ensemble ones were
applied by training a logistic regression model on their predicted scores. De-
tailed list of features used for other models are provided by [1]. For the
MMSplice model, the following features were included:

• Intron 3′module delta score

• Acceptor module delta score

• Exon 5′module delta score

• Donor module delta score

• Intron 5′module delta score

• Indicator variable: Intron 3′module overlap with acceptor module

• Indicator variable: Exon 5′module overlap with acceptor module or donor
module

• Indicator variable: Intron 5′module overlap with donor module

For MutPred Splice model, following features were included:

• MutPred Splice score

• Indicator variable: MutPred Splice score is NA

The same pre-processing pipeline was applied to all models. If a variant
was not scored by a model, then its differential effect for this model was
predicted to be 0. Moreover, all features were standardized to have mean
zero and variance one.
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Fig. S1: Model architecture of donor (A) model and acceptor (B) model.
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Fig. S2: Exon scoring models. Intron scoring models were trained with the
same principle with the input being intronic random sequences. (A) Two
libraries of the splicing MPRA experiment. A5SS (up) and A3SS (down).
(B) Model architecture for exon scoring module. The first convolution layer
was shared across two libraries. The dense layers were learned specifically
for each library.
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Fig. S3: Measured differences in Ψ (y-axis) versus predicted differences (x-
axis) for the MMSplice exon 3’module (left) and for the MMSplice exon
5’module (right) for the training exonic variants of the Vex-seq dataset.
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Fig. S4: Measured differences in Ψ (y-axis) versus predicted differences (x-
axis) when summing the predicted scores of the MMsplice donor site modules,
intronic modules and the exon 5’ module (left), and when summing the
predicted scores of the MMsplice donor site modules, intronic modules and
the exon 3’ module (right). The plots show the training variants of the
Vex-seq dataset.
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Fig. S5: Measured differences in Ψ (y-axis) versus predicted differences
(x-axis) for MMSplice, HAL, SPANR and MaxEntScan5 for variants of the
Vex-seq test data within 3 nt in the exon and 6 nt in the intron around the
donor sites.
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Fig. S6: Measured differences in Ψ (y-axis) versus predicted differences
(x-axis) for MMSplice, HAL, SPANR and MaxEntScan5 for variants of the
Vex-seq test data within 3 nt in the exon and 20 nt in the intron around
the acceptor sites. HAL only scores the 3 nt in the exon, but no intronic
variants.
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Fig. S7: Model benchmarking on MFASS data. (A) Precision-recall curve
for MMSplice (black), HAL (blue) and SPANR (orange) for MFASS exonic
variant. (B) Precision-recall curve for MMSplice (blue), SPANR (black) for
intronic variants.
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Fig. S8: Comparing (1) MMSplice, (2) SPANR, (3) MutPred SPlice, (4)
the ensemble model with MaxEntScan, HAL and LaBranchoR on classifying
“pathogenic” versus “benign” variants from ClinVar. ROC curve computed
with ClinVar variants from 4 different regions.
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Fig. S9: Comparing three ensemble models that used phyloP and CADD
as features on classifying “pathogenic” versus “benign” variants from
ClinVar: (1) ensemble of MMSplice with phyloP and CADD (MM-
Splice+phyloP+CADD), (2) ensemble of MaxEntScan, HAL, LaBranchoR,
MMSplice with phyloP and CADD (kipoiSplice5+phyloP+CADD), (3) en-
semble of SPANR with phyloP and CADD (SPANR+phyloP+CADD), (4)
ensemble of phyloP and CADD (phyloP+CADD), (5) ensemble of MutPred
with phyloP and CADD (MutPred+phyloP+CADD). ROC curve computed
with ClinVar variants from 4 different regions.
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Fig. S10: ROC curve comparing MMSplice (blue) to SPiCE (orange) and a
SPiCE model that we fitted to the ClinVar dataset (SPiCE tuned, black).
The calculation of the ROC curve was restricted to the 13,820 ClinVar vari-
ants that SPiCE was able to score.
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