Information Fig S1 and Table S1.

To represent the evolutionary relation among the plant HXKs presented in the Fig S1, the evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model using 2000 bootstrap [29, 30, 31]. The tree with the highest log likelihood (-40548.09) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 114 amino acid sequences. There was a total of 807 positions in the final dataset.

All amino acid sequences were aligned using MEGA X [29]. Group designations were made from visual inspection of apparent clusters and according to literature information. The amino acids sequences were obtained from Uniprot¹ (https://www.uniprot.org/uniprot The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158-9), PLAZA² (https://bioinformatics.psb.ugent.be/plaza/), EnsemblPlants³ (http://plants.ensembl.org/index.html) and NCBI⁴ (https://www.ncbi.nlm.nih.gov/), for the following species:

Sc: Saccharomyces cerevisiae; Mp: Marchantia polymorpha; Pp: Physcomitrella patens; Sm: Selaginella moellendorffii; Hv: Hordeum vulgare; Os: Oryza sativa ssp japonica; Sb: Sorghum bicolor; Zm: Zea mays; Ta: Triticum aestivum; At: Arabidopsis thaliana; Vv: Vitis vinifera; Sl: Solanum lycopersicum; St: Solanum tuberosum; Mt: Medicago truncatula; Nt: Nicotiana tabacum. The gene and ID number of the analyzed sequences are in Table S1.

Fig S1. Molecular phylogenetic analysis for plant HXKs.

Gene Name	ID number	Gene Name	ID number
	Saccharon	nyces cerevisiae	
ScHXK1	P04806 ¹	ScHXK2	P04807 ¹
	Marchan	tia polymorpha	
MpHXK1	Mapoly0022s0069 ²	MpHXK2	Mapoly0056s0008 ¹
	Physcon	nitrella patens	
PpHXK1	Pp3c14_6150 ²	PpHXK2	Pp3c19_20120 ²
РрНХКЗ	Pp3c21_19280 ²	PpHXK4	Pp3c1_5000 ²
PpHXK5	Pp3c2_11350 ²	Р рНХК6	Pp3c10_8650 ²
PpHXK7	Pp3c22_9450 ²	PpHXK8	Pp3c18_12510 ²
РрНХК9	Pp3c8_18980 ²	PpHXK10	Pp3c23_970 ²
PpHXK11	Pp3c15_12840 ²		
	Selaginelle	a moellendorffii	
SmHXK1	SMO134G0275 ²	SmHXK2	SMO147G0324 ²
SmHXK3	SMO141G0303 ²	SmHXK5	SMO230G0110 ²
	Horde	um vulgare	
HvHXK3	HVU0038G3254 ²	HvHXK5	HVU0036G1776 ²
НvНXК6	HVU0038G0500 ²	HvHXK7	HVU0036G2577 ²
HvHXK8	HVU0038G2059 ²	HvHXK9	HVU0038G2827 ²
HvHXK10	HVU0036G1944 ²		
	Oryza sati	va ssp japonica	
OsHXK1	OS07G0446800 ³	OsHXK2	XP_015637797 ⁴
OsHXK3	XP_015621344 ⁴	OsHXK4	XP_015645316 ⁴
OsHXK5	OS05G0522500 ³	OsHXK6	OS01G0742500 ³
OsHXK7	OS05G0187100 ³	OsHXK8	OS01G0190400 ³
OsHXK9	XP_015614778 ⁴	OsHXK10	OS05G0375100 ³
	Sorgh	um bicolor	
SbHXK1	Sobic.003G035500 ²	SbHXK2	Sobic.003G280400 ²

Table S1. ID numbers of the HXK gene families used for the phylogenetic analysis.

SbHXK3	Sobic.003G421201 ²	SbHXK5	Sobic.009G203500 ²
SbHXK6	Sobic.003G291800 ²	SbHXK7	Sobic.009G069800 ²
SbHXK10	Sobic.009G119100 ²		
	Zea	n mays	
ZmHXK3a	GRMZM2G068913 ³	ZmHXK3b	GRMZM2G467069 ³
ZmHXK4	GRMZM2G058745 ³	ZmHXK5	GRMZM2G432801 ³
ZmHXK6	GRMZM5G856653 ³	ZmHXK7	GRMZM2G051806 ³
ZmHXK8	GRMZM2G104081 ³	ZmHXK9	GRMZM2G171373 ³
ZmHXK10	GRMZM2G046686 ³		
	Triticum	n aestivum	
TaHXK1	TAE02953G001 ²	TaHXK2	TAE54883G001 ²
TaHXK3	TAE52226G001 ²	TaHXK4	TAE05512G002 ²
TaHXK5	TAE56610G005 ²	TaHXK6	TAE57032G006 ²
TaHXK7	TAE37995G004 ²	TaHXK8	TAE47638G004 ²
TaHXK9	TAE40692G004 ²	TaHXK10	TAE57619G001 ²
TaHXK11	TAE13066G003 ²	TaHXK12	TAE40850G002 ²
TaHXK13	TAE40826G003 ²	TaHXK14	TAE19797G001 ²
TaHXK15	TAE41439G002 ²	TaHXK16	TAE21658G002 ²
TaHXK17	TAE05962G003 ²	TaHXK18	TAE02025G001 ²
TaHXK19	TAE30281G001 ²	TaHXK20	TAE51630G001 ²
TaHXK21	TAE08161G001 ²	TaHXK22	TAE51140G001 ²
TaHXK23	TAE53374G005 ²	TaHXK24	TAE08078G001 ²
TaHXK25	TAE49603G001 ²	TaHXK26	TAE51566G002 ²
	Arabidop	osis thaliana	
AtHXK1	AT4G29130 ³	AtHXK2	AT2G19860 ³
AtHXK3	AT1G47840 ³	AtHKL1	AT1G50460 ³
AtHKL2	AT3G20040 ³	AHKL3	AT4G37840 ³
	Vitis	vinifera	
VvHXK1	GSVIVG01015297001 ²	VvHXK2	GSVIVG01016971001 ²
VvHXK3	GSVIVG01009899001 ²	VvHKL1	GSVIVG01031551001 ²

VvHKL2	GSVIVG01002667001 ²							
	Solanum lycopersicum							
SlHXK1	Solyc03g121070.2 ²	SlHXK2	Solyc06g066440.2 ²					
SlHXK3	Solyc12g008510.1 ²	SlHXK4	Solyc04g081400.2 ²					
SlHXK5	Solyc11g065220.1 ²	SlHXK6	Solyc02g091830.2 ²					
Solanum tuberosum								
StHXK1	PGSC0003DMG400002525 ²	StHXK2	PGSC0003DMG400016521 ²					
StHXK3	PGSC0003DMG400000295 ²	StHXK4	PGSC0003DMG400009861 ²					
StHXK5	PGSC0003DMG400013187 ²	StHXK6	PGSC0003DMG400030624 ²					
	Medicago t	truncatula						
MtHXK1	Medtr8g102460 ²	MtHXK2	Medtr6g088795 ²					
MtHXK3	Medtr8g014530 ²	MtHXK4	Medtr1g025140 ²					
MtHKL1	Medtr5g009000 ²	MtHKL2	Medtr4g097900 ²					
Nicotiana tabacum								
NtHXK1	AAS60195 ¹	NtHXK2	AAS60197 ¹					
NtHXK3	Q6Q8A5 ¹	NtHXK4	AAT77515 ¹					
NtHXK5	AAS60192 ¹	NtHXK6	AAS60194 ¹					
NtHKL1	AAS60198 ¹							

Domain/	AtHXK1	ZmHXK								
Residue	AIIIANI	3 a	3b	4	5	6	7	8	9	10
	L 100	<u>I 100</u>	<u>I 100</u>	L 109	L 109	L 109	L 70	L 72	L 107	<u>V 102</u>
	L 102	L 102	L 102	L 111	L 111	L 111	L 72	L 74	L 109	L 104
	L 143	L 141	L 141	L 152	L 152	L 152	L 113	L 115	L 150	L 144
	I 147	<u>V 145</u>	<u>V 145</u>	I 156	I 156	I 156	I 117	I 119	I 154	I 148
	L 151	L 149	L 149	L 160	L 160	L 160	L 121	L 123	L 158	L 152
Hydrophobic	V 155	V 153	V 153	V 164	V 164	V 164	V 125	V 127	<u>I 162</u>	<u>I 156</u>
channel	L 172	L 165	L 165	L 181	L 181	L 181	L 138	I 144	L 179	L 168
	F 174	F 167	F 167	F 183	F 183	F 183	F 140	F 146	F 181	F 170
	F 176	F 169	F 169	F 185	F 185	F 185	F 141	F 148	F 183	F 172
	F 197	F 190	F 190	F 206	F 206	F 206	F 163	F 169	F 204	F 193
	L 211	L 204	L 204	L 220	L 220	L 220	L 177	L 183	L 218	L 207
	L 215	L 208	L 208	<u>M 224</u>	<u>M 224</u>	<u>M 224</u>	<u>M 181</u>	<u>M 187</u>	<u>I 222</u>	L 211
Catalytic	K 195	K 188	K 188	K 204	K 204	K 204	K 161	K 167	K 202	K 191
residues	D 230	D 223	D 223	D 239	D 239	D 239	D 196	D 202	D 237	<u>N 226</u>
	T 194	T 187	N 187	T 203	T 203	T 203	T 160	T 166	T 201	T 190
	K 195	K 188	K 188	K 204	K 204	K 204	K 161	K 167	K 202	K 191
	N 229	N 222	N 222	N 238	N 238	N 238	N 195	N 201	N 235	N 225
Glucose	D 230	D 223	D 223	D 239	D 239	D 239	D 196	D 202	D 236	N 226
contacts	S 177	S 170	S 170	S 186	S 186	S 186	S 143	S 149	S 184	S 173
	N 256	N 249	N 249	N 265	N 265	N 265	N 222	N 228	N 263	N 252
	E 284	E 277	E 277	E 293	E 293	E 293	E 253	E 256	E 291	E 281
	E 315	E 308	E 308	E 324	E 324	E 324	E 284	E 287	E 322	E 312

Table S2. Comparison of conserved amino acids at catalytic and substrate binding domains between ZmHXKs with AtHXK1 [32]. The amino acid changes are in bold.

	-	_								
	G 104	G 104	G 104	G 113	G 113	G 113	G 74	G 76	G 111	G 106
	T 105	T 105	T 105	T 114	T 114	T 114	T 75	Т 77	T 112	T 107
	N 106	N 106	N 106	N 114	N 114	N 114	N 76	N 78	N 113	S 108
	S 177	S 170	S 170	S 186	S 186	S 186	S 143	S 149	S 184	S 173
	K 195	K 188	K 188	K 204	K 204	K 204	K 161	K 167	K 202	K 191
ATP	D 230	D 223	D 223	D 239	D 239	D 239	D 196	D 202	D 236	N 226
interaction	T 253	<u>A 246</u>	<u>A 246</u>	T 262	T 262	T 262	T 219	T 225	T 260	A 249
	G 254	G 247	G 247	G 263	G 263	G 263	G 220	G 226	G 261	G 250
	D 439	E 438	E 438	D 450	D 450	D 449	D 406	D 409	D 445	E 444
	G 440	G 439	G 439	G 451	G 451	G 450	G 407	G 410	G 446	G 445
	G 441	G 440	G 440	G 452	G 452	G 451	G 408	G 411	G 447	G 446
	S 478	S 477	S 477	S 489	S 489	S 486	S 445	S 448	S 484	S 483
	G 91	G 91	G 91	G 100	G 100	G 100	G 61	G 63	G 98	G 93
	G 95	G 95	G 95	G 104	G 104	G 104	G 65	G 67	G 102	G 97
	G 103	G 103	G 103	G 112	G 112	G 112	G 73	G 75	G 110	G 105
	G 173	G 166	G 166	G 182	G 182	G 182	G 139	G 145	G 180	G 169
Conserved	G 252	G 245	G 245	G 261	G 261	G 261	G 218	G 224	G 259	G 248
Glycine	G 254	G 247	G 247	G 263	G 263	G 263	G 220	G 226	G 261	G 250
	G 310	N 303	N 303	G 319	G 319	G 319	G 279	G 282	D 317	Y 307
	G 320	G 313	G 313	G 329	G 329	G 329	G 289	G 292	G 327	G 317
	G 440	G 439	G 439	G 451	G 451	G 450	G 407	G 410	G 446	G 445
	G 479	G 478	G 478	G 490	G 490	G 489	G 446	G 449	G 485	V 484

Fig S2. SDS-PAGE of full versions of recombinant ZmHXKs. Purification process of recombinant: (**A**) ZmHXK4, (**B**) ZmHXK5, (**C**) ZmHXK6, (**D**) ZmHXK7, and (**E**) ZmHXK8. St: Molecular weight standard, P: Pellet clarified with urea, S: Soluble supernatant, U: Unbound, W: Wash, E_X: Elution.

Fig S3. Purification of truncated versions of recombinant ZmHXKs. Purification process of recombinant: **(A)** ZmHXK4 Δ 30, **(B)** ZmHXK5 Δ 30, **(C)** ZmHXK6 Δ 30 and **(D)** ZmHXK9 Δ 30. All fractions were separated by SDS-PAGE and stained with Coomasie blue. **(E)** Western Blot of full and truncated versions of ZmHXK4-6. The proteins were detected using anti-V5-HRP. St: Molecular weight standard, T: Total cell extract S: Soluble supernatant, U: Unbound, W: Wash, E_x: Elution.

Fig S4. Inhibitory effects of ADP, NAG and G6P on ZmHXKs. (**A**, **B**, **C**) ZmHXKΔ4, (**D**, **E**, **F**) ZmHXKΔ5, (**G**, **H**, **I**) ZmHXKΔ6, (**J**, **K**, **L**) ZmHXK7, and (**M**, **N**, **O**) ZmHXK8.

Fig S5. Expression profile of full and truncated versions of ZmHXKs in the JT 20088 yeast mutant. St: Molecular weight standard.

Protein	Transmembrane domain	Transit peptide	Subcellular localization
ZmHXK3a	No	5-25	Mitochondrion
ZmHXK3b	No	5-25	Mitochondrion
ZmHXK4	4-24	No	Secretory pathway
ZmHXK5	4-24	No	Secretory pathway
ZmHXK6	9-29	No	Secretory pathway
ZmHXK7	No	No	Other
ZmHXK8	No	No	Chloroplast
ZmHXK9	4-24	No	Secretory pathway
ZmHXK10	6-26, 339-359	No	Secretory pathway

Table S3. Subcellular prediction of ZmHXKs.

The prediction of transmembrane domains and transit peptide was made with the full amino acid sequence of each HXK with the aid of Toppred 1.10 software. The first 60 amino acids of each HXK protein sequence was used to predict the subcellular localization with the TargetP 1.1 software [32].

Fig S6. Evaluation of cytosolic and mitochondrial purity using specific antibodies. The purity of the cytosolic (Cyt), mitochondrial washed (wMit) and mitochondrial Percoll purified (pMit) fractions (10 μ g) was evaluated by Western blot using Agrisera (Vännäs, Sweden) antibodies. These are representative membranes of at least three replicates.

Insertion in 7mHXK9		IXK9	Hydroph	obic channel	Conserved Gly	
	(75-76)		V ¹⁵⁵	L ²¹⁵	G ³¹⁰	
	(13-10)		-		DCEOT	
AtHXK1	GG	5	RVLLG	ALERV	DCEOT	
AtHXK2	GG \$	5	RVLLG	AMERV	DCEUL	
AtHXK3	GG (G	SVQLG	AMEAH	PGENL	
AtHKL1	GG \$	5	RVLLG	ALNRR	ANDMG	
AtHKL2	GG \$	S	KVHL G	ALN <mark>KR</mark>	SNDMG	
AtHKL3	CC (G	RGTLG	SLETH	PGHKI	
OsHXK1	GGS	S	RVRLA	AMSER	PGEQT	
OsHXK2	GG	5	RVQLG	ALERQ	PGEQV	
OsHXK3	GG	S	RVQVG	ALANC	RNDQG	
OsHXK4	GA (G	RVQLG	AMERQ	PGEQI	
OsHXK5	SH	A	RVQLG	AMERQ	PGEQI	
OsHXK6	PH 2	A	RVQLG	AMERQ	PGEQI	
OsHXK7	GGS	-	RVQLA	AMEKQ	PGEQI	
OsHXK8	GGS	-	KVHLG	AMVKQ	PGEQI	
OsHXK9	GG	S	RVQLG	AIRSQ	PGKQV	
OsHXK10	GG	5	KVELG	ALARN	YYDQG	
ZmHXK3a	GG	S	KVEVG	ALARS	RNDQG	
ZmHXK3b	GG	5	RVEVG	ALARN	RNDQG	
ZmHXK4	IH	A	RVQLG	AMERQ	PGEQI	
ZmHXK5	IH 2	A	RVKLG	AMERQ	PGEQI	
ZmHXK6	PH	A	RVOLG	AMERQ	PGEQI	
ZmHXK7	GGS	-	RVOLA	AMEKQ	PGEQI	
ZmHXK8	GGS	-	KVOLG	AMEKO	PGEQI	
ZmHXK9	DSEGDSGSS	7	RIOFG	AIKRO	PDEQI	
ZmHXK10	GA 8	5	KLELG	ALVRN	QYDQA	

Fig S7. Changes in the amino acids of ZmHXK9 that could explain its low activity. The sequences were aligned using SeaView 4 [32].

	qPCR primers
ZmHXK4-RT-Fw	GTGATCGAGGAGGTCGAGAG
ZmHXK4-RT-Rv	AACAGCCCATGTTCATCTCC
ZmHXK5-RT-Fw	GTGTGCTGCGAGTCCAACTA
ZmHXK5-RT-Rv	GGAAGGAAAACGTGAAACCA
ZmHXK6-RT-Fw	CATTGCTGCTGAGTTGGAAA
ZmHXK6-RT-Rv	CTTTCCATGGCCCTACTCAA
ZmHXK7-RT-Fw	CTGGTTTCGGGCATGTATCT
ZmHXK7-RT-Rv	GACCACCATCTTCCTCGTGT
ZmHXK8-RT-Fw	TGCTCCTCCTACGTCGAT
ZmHXK8-RT-Rv	GCCGACTTCTCTGGAGTCAC
ZmHXK9-RT-Fw	TTCAGTTGCATCTGGCACTC
ZmHXK9-RT-Rv	CATATCTCCCAGCAGCCAAT

Table S4. List of primers used for qPCR analysis, subcloning each maize HXK and PCR analysis in the yeast mutant.

Subcloning primers and adapters

(Bases necessary for recombination and not present in original template are underlined)

AtHXK1-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGTAAAGT AGCTGTTGGAG
AtHXK1-GW-Rv	AGAAAGCTGGGTGAGAGTCTTCAAGGTAGAGAGAGTG
ZmHXK4-GW-Fw	<u>AAAAAGCAGGCTTCGAAGGAGATAGAACC</u> ATGGTGAAGGC CGTGGTGGT
ZmHXK4-GW-Rv	AGAAAGCTGGGTGGTCACTCGCGCCATACTGATACTG
ZmHXK5-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGGAAGTC CGTGGTGGT
ZmHXK5-GW-Rv	AGAAAGCTGGGTGGTCACTCTCGCCATACTGGGAGT
ZmHXK6-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCGAAGG GCGGTGCGGT
ZmHXK6-GW-Rv	AGAAAGCTGGGTGTGCAGCTTCAGCATACTGGGAGTGC
ZmHXK7-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGTGGCGGC GGCGGAC
ZmHXK7-GW-Rv	AGAAAGCTGGGTGGTACTGCGAGTGGGCAGCTGCAA

ZmHXK8-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCGGCAGC TGCGCTGG
ZmHXK8-GW-Rv	AGAAAGCTGGGTGCTGAGATTGCGAGGCAGCAATCAGGG
ZmHXK9-GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGCGGAAGCC GGCGGCACT
ZmHXK9-GW-Rv	AGAAAGCTGGGTGATCATCCACGGCCTGGAGACGTTG
ZmHXK4∆30- GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGACGCCGA CCTCCTGGGG
ZmHXK5∆30- GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGGACGCCGC GCTCCTGGG
ZmHXK6∆30- GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATGAGGAGGA GTCGGCGGCGG
ZmHXK9∆30- GW-Fw	AAAAAGCAGGCTTCGAAGGAGATAGAACCATG GATGGGCACGC

Primers for the PCR analysis in the yeast mutant

		Size (bp)
ZmHXK4-Fw	CACGGTTGGTGAAGATGTTG	480
ZmHXK4-Rv	TGACATATCTGGCGTCCTCA	
ZmHXK5-Fw	CACGGTTGGTGAAGATGTTG	480
ZmHXK5-Rv	TGACATATCTGGCGTCCTCA	
ZmHXK6-RT-Fw	GGGACTCTAATTAAGTGGACCAAAG	147
ZmHXK6-RT-Rv	AGCCAATGTGCCTACAGTATC	
ZmHXK7-RT-Fw	GCTGTTGGTGAGGATGTCG	130
ZmHXK7-RT-Rv	CGTCCTCATCGTTGTACCG	
ZmHXK8-RT-Fw	TCTCCTACGTCGATAAGCTCC	180
ZmHXK8-RT-Rv	GAATGCCGACTTCTCTGGAG	
ZmHXK9-RT-Fw	GAAATTGTCCGAAGGGTCTTG	137
ZmHXK9-RT-Rv	TCAGGCGATGTGTCTTGATG	