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Abstract 19 

The demonstration that human decision making can systematically violate the laws of 20 
rationality has had wide ranging impact on the fields of economics and psychology. However, 21 
the cognitive processes that give rise to irrational biases are still poorly understood. In this 22 
study, we use a pupillary index to arbitrate between two predominant existing hypotheses – the 23 
hypothesis that biases result from fast effortless processing and the hypothesis that biases 24 
result from more extensive integration. While effortless processing is associated with smaller 25 
pupillary responses, more extensive integration has been shown to be associated with larger 26 
pupillary responses. Thus, we test the relationship between pupil responses and choice behavior 27 
on six different foundational decision-making tasks classically used to demonstrate irrational 28 
biases. 29 

 30 

 31 
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Introduction   32 

In certain well-described scenarios, human decision making exhibits systematic deviations from 33 
rational behavior. For instance, exactly how a problem is described can determine whether a 34 
particular option is more or less likely to be chosen, even when equivalent information is 35 
provided by the different descriptions (e.g., “framing effect”1). The discovery and 36 
characterization of such biases has had substantial impact on the fields of psychology and 37 
behavioral economics2. However, the mechanisms underlying biased decision making remain 38 
widely debated.  39 

The dominant paradigm posits that biased decisions arise from a fast and effortless intuitive 40 
process, which can be corrected via slower, effortful, deliberation2,3. However, a separate line of 41 
work proposes essentially the opposite – that biases arise from a gradual process of evidence 42 
integration4-11. While these two theories are not necessarily mutually exclusive, each theory 43 
provides a different account for why some people may be more biased than others. Specifically, 44 
the former theory suggests that biased decision makers employ an effortless process, whereas 45 
the latter theory suggests they employ more extensive integration (see Supplementary 46 
Material for an example of a computational model illustrating the latter mechanism).  47 

Critically, these two explanatory factors, low effort and extensive integration, are known to be 48 
associated with opposite changes in pupil diameter. It is well established that lower effort is 49 
accompanied by lower pupillary responses12. On the other hand, recent studies show that 50 
people with higher pupillary responses integrate more extensively different aspects of available 51 
information13–15. This latter finding is among a set of neural and behavioral results explained 52 
by an hypothesized relationship between high pupillary responses, lower levels of sustained 53 
locus coeruleus-norepinephrine function, and low neural gain13,16-20. In previous theoretical 54 
work, we simulated low levels of gain (which means that incoming neural signals have a weaker 55 
impact on the postsynaptic neuron) and showed that the result of this parameterization is a 56 
more prolonged integration of information for decision making, which allows a broader set of 57 
sources of information to influence the decision, including sources that are less salient or of 58 
secondary importance14. Such inclusive integration may be necessary to allow weak biasing 59 
influences, which are typically marginal or even irrelevant to the problem at hand, to exert 60 
their effect.  61 

Thus, analyzing decision makers’ pupil diameter could tell us which mechanism—an automatic 62 
effortless process or extensive integration—is likely responsible for generating biased 63 
decisions. Further, understanding the relationship between individual differences in 64 
susceptibility to decision biases and pupil dynamics can provide a simple, non-invasive method 65 
for measuring an individual’s tendency to be biased by the way a problem is described.   66 

Here we test human participants on six well-established decision-making tasks from the 67 
heuristics and biases literature, while measuring their pupil dilation responses during 68 
performance of the tasks. If neither of the theories outlined above is correct (or if biases on 69 
different tasks are generated by different mechanisms), we should not see any overall 70 
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relationship between pupil response and biases. However, if one these theories consistently 71 
explains individual differences in biased decision making, pupil response measurements should 72 
distinguish between participants who are more susceptible to biased decision making and those 73 
who are relatively immune to these manipulations. A negative relationship between pupil 74 
response and biases would support the long-standing belief that biases are generated by an 75 
effortless automatic decision process, whereas a positive relationship would indicate that biases 76 
are produced by gradual integration of evidence. Equally important, the latter result would 77 
suggest a potential role for low levels neural gain in facilitating the manifestation of decision 78 
biases. The only results of this experiment that would be less than illuminating are a mix of 79 
relationships between pupillometry and susceptibility to biases across tasks. To validate our 80 
pupillometric measurements and to measure an additional complementary index of neural gain 81 
we include one minute of a classic oddball task between every two test tasks. The reliable 82 
dilation of the pupil in response to oddballs19,20 will serve as a positive control. Further, 83 
response times on such perceptual discrimination tasks can be expected to reflect neural gain, 84 
as indicated by computational modeling and experimental evidence14. Thus, a neural gain 85 
account of decision biases would be further supported by the association of biased decisions 86 
with slower responses to oddballs.  87 

Methods 88 

Participants. 120 participants will be recruited from the greater Princeton area. The sample 89 
size was determined via a bootstrapping-based power analysis of pilot data (see below). 90 
Inclusion criteria are age 18 to 35 and compatibility with pupillometry, as evidenced by 91 
successful calibration of the eye tracker. Participants will give written informed consent before 92 
taking part in the study, which is approved by the university’s institutional review board. 93 
Participants will receive either course credit or compensation of $12 per hour for participation. 94 

Power analysis. To determine the sample size, we used data from 44 pilot participants to 95 
compute the expected probability of meeting the weak and strong criteria in support of the 96 
study’s hypotheses (detailed under Statistical analysis) for different numbers of participants. 97 
Expected probabilities were computed by performing the analysis on 1000 datasets, each of 98 
which constructed by sampling participants with replacement from the pilot data. The power 99 
analysis showed that a sample size of 120 participants provides a 95% probability of finding 100 
strong support for the study’s hypothesis, given the effect size found in the pilot data (Figure 101 
1). While smaller effect sizes might be of theoretical importance, an effect size commensurate 102 
with that found in the pilot data would be necessary for pupillary measurement to reliably 103 
predict susceptibility to decision-making biases.    104 
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 105 
Figure 1. Power analysis. Expected probability of meeting the weak and strong criteria in favor of the study’s 106 
hypotheses for different numbers of participants (see Statistical analysis for a specification of the criteria). 107 
Probabilities were computed by analyzing 1000 datasets, each of which constructed by sampling participants with 108 
replacement from the pilot data. Horizontal line: 95% power. Vertical line: minimal sample size required to achieve 109 
95% power. 110 

 111 

Stimuli. Stimuli were generated using the Processing programming environment21. To 112 
minimize luminance-related changes in pupil diameter, we will first identify colors that are 113 
isoluminant with the background by having participants perform the flicker-fusion procedure22 114 
on the display system that will be used in the experiment. The colors of the experimental 115 
stimuli will then be automatically adjusted accordingly, to achieve subjective isoluminance in 116 
the conditions of the testing room, for each participant. Stimuli will be presented on a computer 117 
screen using MATLAB software (MathWorks) and the Psychophysics Toolbox23. 118 

Experimental design. Each participant will perform six experimental tasks, each aimed at 119 
inducing a different bias. To facilitate comparisons between participants, all participants will 120 
perform all tasks in the order in which the tasks are described below. The experiment will last 121 
approximately 1 hour. Unless otherwise noted, questions will appear on the screen until the 122 
participant enters their answer using a keyboard (i.e., there will be no time restrictions for 123 
providing an answer). To allow sufficient time for pupillary responses to be resolved, questions 124 
will be separated by random inter-trial intervals, 7 to 9 s long (uniformly distributed), during 125 
which only a fixation cross will appear on the screen.  126 

Task 1: Anchoring task24. Participants will answer two questions about each of 7 quantities 127 
(e.g., the height of the Eiffel tower). They will first be asked to indicate whether the quantity is 128 
greater (‘1’ keyboard key) or smaller (‘2’ keyboard key) than an anchor value. Once the 129 
participant responds, the first question will disappear from the screen, and the participant will 130 
immediately be asked to estimate the quantity by typing it using the keyboard and then 131 
pressing ENTER. Each quantity will be coupled with a low anchor for half of the participants 132 
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and with a high anchor for the other half. Each participant will be presented with a low anchor 133 
for half (3 or 4) of the quantities, and with a high anchor for the other half. Quantities and 134 
calibrated anchor values are taken from a previous study25, including: length of the Mississippi 135 
river, population of Chicago, number of babies born per day in the US, height of mount Everest, 136 
pounds of meat eaten by an American per day, year the telephone was invented, and maximum 137 
speed of a house cat. Participants’ estimates will be normalized to a common scale (0 = lowest 138 
estimate, 1 = highest estimate) by subtracting the lowest estimate and then dividing by the 139 
highest resulting estimate. The group mean estimate, averaged over both types of anchors, 140 
provides a measure of what an average person who is not affected by the anchors is likely to 141 
answer. The anchoring effect will therefore be quantified by the deviation of an estimate in the 142 
direction of the anchor relative to the mean estimate provided by the whole study sample. 143 
Estimates whose distance from all other participants’ mean estimate is more than ten times the 144 
range of the other participants’ estimates will be excluded as outliers.  145 

Task 2: Persistence of Belief task26. Participants will be presented with two urns, each filled 146 
with 10 colored balls (Figure 2a). One urn will contain 3 red balls, 2 green balls, 2 blue balls, 2 147 
brown balls and 1 purple ball, and the other urn will contain 2 red balls, 3 green balls, 1 blue 148 
ball, 2 brown balls and 2 purple balls. Participants will then be shown a sequence of 90 balls, 149 
which they will be told were sampled with replacement from one of the urns. Each sampled ball 150 
will fall from the top of the screen, horizontally centered, until it settles near the bottom of the 151 
screen, and it will then disappear. Balls will follow one another in sequence without a break (3.3 152 
s per ball), while the two urns are presented on the left and right sides of the screen. Every 5 153 
samples (balls), participants will be asked to indicate using an appropriately-labeled horizontal 154 
sliding bar which urn they think the sequence was sampled from. Participants will be instructed 155 
to indicate their degree of certainty by means of the precise position of the bar, where a center 156 
position corresponds to total uncertainty. Each question will be followed by an inter-trial 157 
interval. The sequence of balls will be set up so that the first 30 balls favor one of the urns as 158 
their source with a probability of 0.95, and the next 60 balls favor the other urn to a similar 159 
degree (per 30 balls). Therefore, it is optimal to favor one urn after 30 balls, be indifferent after 160 
60 balls, and favor the second urn after 90 balls (Figure 2b). Accordingly, an optimal observer 161 
would be indifferent on average during the last 60 balls. However, the biasing impact of an 162 
initially formed belief on the interpretation of later evidence, akin to a framing effect, is 163 
expected to slow down belief reversal. Thus, a persistence-of-belief effect will therefore be 164 
quantified by the degree to which each participant’s average response during the last 60 balls 165 
favors the initially-favored urn. The initially-favored urn will be counterbalanced across 166 
participants. Data from participants who do not favor the correct urn during the first 30 balls 167 
will be excluded from analysis.  168 
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 170 

Task 3: Attribute framing task27. Participants will be asked to rate ground beef products, 171 
gambles, and students’ performance, whose attributes are framed either positively or 172 
negatively. In the ground beef task, participants will be asked to imagine that they are having a 173 
friend over for dinner and they are about to make their favorite lasagna dish with ground beef. 174 
They will then be asked to rate how satisfied they would be purchasing each of 4 ground beef 175 
products, described in terms of price per pound ($2.7 and $3.3), and either percentage lean (80% 176 
and 90%, positive frame) or percentage fat (20% and 10%, negative frame). In the gambles task, 177 
participants will be asked to imagine that they have $10 and can either keep the $10 or pay the 178 
$10 to take a gamble. They will then be asked to rate how likely they are to take each of 3 179 
gambles, described in terms of amount to be won ($50, $100 and $200) and either probability of 180 
wining (20%, 10% and 5%, positive frame) or probability of losing (80%, 90% and 95%, negative 181 
frame). In the student performance task, participants will be asked to evaluate each of 2 182 
students on the basis of midterm exam and final exam performance, described in terms of either 183 
percent correct (50% and 70%, positive frame) or percent incorrect (50% and 30%, negative 184 
frame). The attributes of an item will remain on the screen until the participant finishes rating 185 
the item by adjusting an appropriately labeled vertical sliding bar and then pressing ENTER. 186 
Each item will be framed positively for half of the participants, and negatively for the other 187 
half. For a given participant, all items of a particular type will be similarly framed (i.e., either 188 
positively or negatively), so as to minimize awareness of the framing manipulation, but framing 189 
will be varied within participants across item types. As in the Anchoring Task, the framing 190 
effect will be quantified for each item type by the deviation of a participant’s mean rating from 191 
the from the overall mean rating, in the direction of the frame (i.e., upwards for positive frames, 192 
and downwards for negative frames).  193 
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Figure 2. Persistence of Belief task. (a) The two urns presented to participants contain different proportions of 
balls of different colors. Balls drawn are pre-determined such that at first it seems that they are drawn from 
one urn, whereas later evidence suggests the other urn. (b) Probability of one urn being the source of the 
sequence of balls as the sequence progresses, determined by the relative likelihood of each of the balls coming 
out of the urn, given the contents of both urns. On average, between trials 30-90 this specific sequence is 
equally likely to come from either of the urns (starting from 95% likely to come from one urn, and 
symmetrically changing to 95% likely to come from the other urn). Note that even if participants did not reach 
95% certainty in the first 30 trials, as long as their updates are symmetric, they should go back down to 0 
around trial 60 and to the opposite asymptote at about trial 90, meaning that on average there should be 
indifference on trials 30-90.  
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Task 4: Risky Choice framing task28. Participants will face two different scenarios, a medical 194 
scenario and a fire scenario, and they will be asked to indicate using a sliding bar which of two 195 
available actions they would choose in each scenario. One action will have a certain outcome 196 
and the other an uncertain outcome, both of which will be framed in terms of either gains or 197 
losses (counterbalanced across participants). Scenarios will be described in full as done 198 
previously28. In the medical scenario, which concerns the treatment of a deadly disease at an 199 
island inhabited with 600 inhabitants, participants will be asked to choose between gain-framed 200 
outcomes ‘300 people will be saved’ and ‘a 50% chance that 600 people will be saved and a 50% 201 
chance that none of the people will be saved’, or between loss-framed outcomes ‘300 people will 202 
die’ and ‘a 50% chance that 600 people will die and a 50% chance that none of the people will 203 
die’. In the fire scenario, which concerns the treatment of fires threatening 9000 acres of forest, 204 
participants will be asked to choose between gain-framed outcomes ‘3000 acres of forest will be 205 
saved’ and ‘a 60% chance that 5000 acres will be saved and a 40% chance that no forest under 206 
threat will be saved’, or between loss-framed outcomes ‘6000 acres of forest will be lost’ and ‘a 207 
60% chance that 4000 acres will be lost and a 40% chance that 9000 acres will be lost’. For each 208 
question, the attributes of the first option (as described above) will appear on the left side of the 209 
screen, and the attributes of the second option will appear on the right side of the screen. These 210 
details will remain on the screen until the participant indicates their preference by adjusting an 211 
appropriately labeled horizontal sliding bar and then presses ENTER. As for the Anchoring 212 
and Attribute framing tasks, the framing effect will be quantified as the deviation of a 213 
participant’s preferences from the overall mean rating, in the direction of the frame (i.e., 214 
towards the certain outcome in the gain frame and towards the uncertain option in the loss 215 
frame, in line with people’s well-documented risk-aversion in the gain domain and risk-seeking 216 
in the loss domain29).  217 

Task 5: “Task Framing” task30. Participants will face 5 different problems, concerning 218 
various subjects such as child custody, vacation choice, ice-cream choice and gambling. Each 219 
problem will involve one option that has more positive and negative attributes (the ‘enriched’ 220 
option) and one option that has fewer positive and negative attributes (the ‘impoverished’ 221 
option). In each problem, half of the participants will be asked to choose one of the two options, 222 
and the other half will be asked to reject one of the two options. For example, in one problem 223 
participants will be asked to imagine that they serve on the jury of an only-child sole-custody 224 
case following a relatively messy divorce, and they have to make a decision based entirely on 225 
the following few observations. Parent A: average income, average health, average working 226 
hours, reasonable rapport with the child, relatively stable social life (this parent has no 227 
particularly positive or negative attributes). Parent B: above-average income, very close 228 
relationship with the child, extremely active social life, lots of work-related travel, minor health 229 
problems (this parent has 3 positive and 2 negative attributes). Half of the participants will be 230 
asked to which parent they would award sole custody of the child, while the other half will be 231 
asked which parent they would deny sole custody of the child. Full description of the other 232 
problems can be found elsewhere30 (problems 1, 2, 4, 5 and 6). Participants will be asked to 233 
report their preferences in the same way as in the Risky Choice framing task above (that is, by 234 
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adjusting a horizontal slider bar with the two options displayed on each side of the bar). The 235 
task frame (award vs. reject) will be varied within participants across questions. The task-236 
framing bias manifests in people’s tendency to choose the enriched option as opposed to the 237 
option they have less information about. Because the enriched option has more positive and 238 
more negative attributes, the bias manifests similarly regardless of whether participants are 239 
asked to express a preference for one option (i.e., award frame) or rejection one option (i.e., 240 
reject frame). Thus, the framing effect will be quantified by the degree to which each 241 
participant chooses the enriched option (i.e., Parent B) more frequently than the impoverished 242 
option (i.e., Parent A).  243 

Task 6: Sample-Size Neglect task31. Participants will be asked to imagine that they are 244 
tossing a biased coin and recording how often the coin lands heads and how often the coin lands 245 
tails. They know that the coin is bent and tends to land on one side 3 out of 5 times, but they do 246 
not know if this bias is in favor of heads or in favor of tails. Participants will then be presented 247 
with 10 different sets of results (number of heads and number of tails), in which the heads 248 
always outnumbered the tails, and they will be asked to indicate using a vertical sliding bar 249 
how certain they are given each set that the coin is biased in favor of heads. The top end of the 250 
bar will be labeled with “completely certain that coin favors heads”, and the bottom end with 251 
“completely uncertain that coin favors heads”. Each set of results will remain on the screen 252 
until the participant finishes adjusting the bar and presses ENTER. Sets of results will be 253 
similar to those used previously31.  254 

As shown by Griffin & Tversky31, the probability that the coin is biased in favor of heads 255 
according to Bayes’ rule is: 256 (ܦ|ܪ)݌ = ݁(௛ି௧) ୪୭୥ଷଶ																																																																																																			(1) 
where h is the number of heads and t is the number of tails. This expression is equivalent to 257 

(ܦ|ܪ)݌ = ݁௡(௛ି௧)௡ ୪୭୥ଷଶ = ݁௡(௛ି௧)(௛ା௧) ୪୭୥ଷଶ																																																																						(2) 
which depends on the sample size (i.e., the number of outcomes, n) and on the observed ratio of 258 

heads and tails (
௛ି௧௛ା௧). Previous work has shown that people tend to overweigh the ratio 259 

component at the expense of the sample size component (sample-size neglect31). Thus, to 260 
measure this bias for an individual participant, we will regress the participant’s estimates 261 

against the true probabilities (Eq. 1) as well as against the ratio component (݁೓ష೟೓శ೟ ୪୭୥యమ	), and 262 
compare the two resulting regression coefficients (βtrue and βratio). All inputs to the regression 263 
analyses will be z scored so as to produce normalized coefficients, such that perfect correlation 264 
between the participant’s ratings and the true probability would yield βtrue  = 1 and βratio = 0, 265 
while complete reliance on the ratio between heads and tails would yield βtrue  = 0 and βratio = 1. 266 
Thus, the sample-size neglect will be computed for each participant as 1- βtrue+ βratio. 267 
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Data from participants for whom βtrue  and βratio are lower than 0, or who report higher 268 
certainty given 3 heads and 2 tails, than given 7 heads and 2 tails, will be excluded from the 269 
analysis. The former criterion would indicate the participant did not give reasonable answers, 270 
and the latter criterion would suggest specifically that the participant mistakenly looked for a 271 
ratio that best matches 3 to 2.  272 

Oddball task. To assess reaction time and pupillary responses in a uniform manner throughout 273 
the experiment, and as a positive control to our other findings, we will use a shortened version 274 
of an auditory oddball task, in which robust anti-correlations between pupil response and 275 
baseline pupil diameter have previously been demonstrated19,20. Participants will be presented 276 
with a sequence of 60-ms sinusoidal tones, of two possible frequencies: 1000 Hz tones, which 277 
will be designated as the target, and 500 Hz tones, which will be designated as non-targets. 278 
Participants will be told to respond with a keypress only when the target tone is sounded. 279 
Inter-tone intervals will be drawn uniformly between 2.1 to 2.9 seconds. To allow the pupil 280 
diameter to return to baseline, the stimuli will be ordered such that target tones will always be 281 
spaced between at least three non-target tones on each side. Target tones will make up 20% of 282 
the tones. Results of pupil diameter response to the oddball items will be analyzed to verify 283 
reliable pupillometry measurements. As in previous studies19, we will exclude from analysis 284 
trials in which a participant responded to a non-target tone (false positive), did not respond to a 285 
target tone (miss) or responded within 100 ms of target presentation (quick response). 286 

Participants will perform a total of seven oddball task blocks, such that oddball blocks alternate 287 
with the six decision making tasks. Each block will consist of 25 tones (5 of them oddballs). 288 
Oddball reaction time and pupillary response will be computed for each decision-making task 289 
based on the oddball blocks that immediately precede and follow the task (that is, based on a 290 
total of 50 tones / 10 oddballs). These measures will be used for complementary analyses 291 
identical to the main analyses described below, but replacing the task pupillary responses with 292 
the oddball reaction times and pupillary responses.  293 

Eye tracking. A desk-mounted SMI RED 120Hz eye-tracker (SensoMotoric Instruments Inc., 294 
MA) will be used to measure participants’ left and right pupil diameters at a rate of 60 samples 295 
per second while they are performing the behavioral tasks with their head fixed on a chinrest. 296 
At the beginning of the experiment, a baseline measurement of pupil diameter at rest will be 297 
taken for a period of 45 s. Pupil-diameter data will be analyzed in MATLAB as in previous 298 
work13,14. First, the data will be processed to detect and remove blinks and other artifacts. For 299 
this purpose, artifactual diameter samples will be identified as those lower than 66% of, or 300 
higher than 150% of, the median non-zero sample, as well as those samples that differ from 301 
adjacent samples by more than 10%. Samples recorded between 33 ms before to 100 ms after an 302 
artifact will also be designated as artifactual. All artifactual samples will be replaced by linear 303 
interpolation. For each task and each question, baseline pupil diameter will be computed as the 304 
average diameter over a period of 1 s prior to presentation of the question. Based on an 305 
examination of the pilot data (Supplementary Figure 2a), we determined that in the six 306 
decision-making tasks, pupil-dilation response will be computed as the peak diameter recorded 307 
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during the period between 1s and 6s following presentation of the question, minus the 308 
preceding baseline diameter. For the oddball task, pupil responses are shorter (Supplementary 309 
Figure 2b), and thus, the peak diameter will be assessed between 0.4s and 2s following 310 
stimulus onset. All pupil-dilation responses will be normalized by the pre-experiment baseline 311 
pupil diameter. Questions and oddball trials for which more than half of the pupil 312 
measurements are affected by artifacts will be considered invalid and excluded from the 313 
analysis. Participants with fewer than two valid (i.e., mostly artifact free) questions in a given 314 
task will be excluded from the analysis of that task. 315 

Statistical analysis. For each task, we will divide participants into tertiles of low, medium and 316 
high mean pupil dilation. This will allow us to visualize the degree to which each group 317 
exhibited a significant bias on each task. Then, to test for an overall relationship between pupil 318 
response and biases across all tasks, we will conduct a permutation test, generating a null 319 
distribution from 105 random permutations of the coupling between individual pupillary and 320 
behavioral data sets. To allow comparison across the different tasks, bias effects in individual 321 
tasks will be normalized by their range in the null distribution, with 0 and 1 signifying the 322 
lowest and highest mean group effect respectively. We will then compare the actual results 323 
with the null distribution to test for a significant difference between the high and low pupil 324 
response groups in mean normalized bias effect across all tasks. A significant (two-tailed, p < 325 
0.05) difference between participants with high and low mean pupillary response in the average 326 
bias across all tasks, and no significant difference between either of these groups and those with 327 
a medium pupillary response contradicting a monotonic relationship between pupillary 328 
response and bias, will constitute weak support in favor of either the effort or the integration 329 
account of biased decision making (depending on the direction of the effect). Strong support for 330 
either account will require the aforementioned criteria, as well as that no contradictory 331 
significant effect is discovered in one of the individual tasks in isolation, while data from at least 332 
two of the tasks show a significant effect that aligns with the overall effect (Table 1).  333 

Support for:  

Hypothesis 1 ߤ୦୧୥୦ < NOT	AND	୪୭୵ߤ ൫ߤ୫ୣୢ୧୳୫ > ୪୭୵ߤ OR ୫ୣୢ୧୳୫ߤ < ୦୧୥୦൯ߤ   

Hypothesis 2 ߤ୦୧୥୦ > NOT	AND	୪୭୵ߤ ൫ߤ୫ୣୢ୧୳୫ < ୪୭୵ߤ OR ୫ୣୢ୧୳୫ߤ > ୦୧୥୦൯ߤ   

Level of support:  

Weak Holds for biases averaged across the six tasks 

Strong Holds for biases averaged across the six tasks,
AND holds separately for at least two individual tasks, 
AND does not support hypotheses 1 on one task and hypothesis 2 on another 

Table 1. Criteria for weak and strong support for effort (hypothesis 1) and integration (hypothesis 2) accounts of 334 
decision making biases. ߤ୦୧୥୦, ߤ୫ୣୢ୧୳୫, ߤ୪୭୵ indicate mean bias effects for the three terciles of participants, 335 
divided according to their mean pupillary response (high, medium, and low).  336 

All of the analyses described above, including the quantification of each individual’s biases and 337 
pupillary responses, and the comparisons at the group level, will proceed precisely as shown in 338 
the Supplementary Code that we provide.  339 
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We will also use a modeling approach to test for different types of parametric relationships 340 
between pupil response and the normalized bias effects across the whole study sample. The 341 
purpose of this complementary analysis is to test whether the relationship between pupillary 342 
response and biases evident across participants also manifests within participants in the changes 343 
that occur from question to question and from task to task. The full model will compute the 344 
likelihood of a given bias effect for participant ݏ on question ݍ of task ݐ using the following 345 
mixed-effects linear regression model:  346 ܲ(bias	effect|ݏ, ,ݐ (ݍ = 	ࣨ൫ߙ௦ + ௧,௤ߙ + ଵߚ ௦ܲ,௧,௤ + ଶߚ ௦ܲ,௧ + ଷߚ ௦ܲ; ௦ଶߪ + ௧,௤ଶߪ ൯,																		(3) 
where ௦ܲ,௧,௤ is the z-scored pupil response of participant ݏ on question ݍ of task ݐ, ௦ܲ,௧ is the 347 

average z-scored pupil response of participant ݏ on task ݐ, ௦ܲ is the average z-scored pupil 348 

response of participant ݏ across all questions of all tasks, all ߚ’s are regression coefficients, 349 ߙ௦	and	ߙ௧,௤ are participant-specific and question-specific intercepts, and ߪ௦ଶ and ߪ௧,௤ଶ  are 350 
participant-specific and question-specific variance terms. This model will be compared to 7 351 
simpler models each omitting one of the 7 terms that comprise the full model. If one of the 352 
simpler model wins the model comparison, further simplifications of that model will be tested 353 
in the same manner (i.e., by omitting any of the remaining terms). To examine whether the 354 
relationship between pupil response and bias differed by task/question, we will compare each 355 
model with additional versions of the same model that include regression coefficients for each 356 
task or question. Model comparison will be conducted in terms of how well different models 357 
predict and fit the data (see Model predictions and Model comparison below). A log Bayes 358 
factor of 10 or more in favor of a model that includes the question and/or task specific 359 
regression terms (ߚଵ and ߚଶ) as compared to a model that does not include these terms will 360 
constitute strong evidence for a within-participant relationship between pupil response and 361 
bias. 362 

Model predictions. We will compare the different models by calculating how accurately each 363 
model predicts participants’ biases. Specifically, we will use a 10-fold cross-validation scheme to 364 
fit the model to data from a subset of participants (‘training set’) and generate predicted biases 365 
for the remaining participants (‘testing set’). Where the model includes participant-specific 366 
terms (e.g., ܽ௦), these terms will be instantiated for the testing set with the mean value fitted to 367 
the training set. Model accuracy will be computed as the Pearson correlation between actual 368 
and predicted mean biases across participants.   369 

Model fitting. To fit the parameters of the different models to observed participant biases, we 370 
will use an importance sampling approach32. Specifically, we will sample 105 random sets of 371 
parameter values from predefined prior distributions. We will then compute the likelihood of 372 
observing the biases given each parametrization, and use the computed likelihoods as 373 
importance weights to derive the posterior distributions. The number of samples may be 374 
increased as needed, and will be judged sufficient only if five independent repetitions of the 375 
analysis all yield the same conclusions with regards to the parameter values and the model 376 
comparison. To define prior distributions, the model-fitting procedure outlined above will be 377 
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applied to the pilot data using broad priors (normal distribution prior with mean set to 0 and 378 
variance set to 100 for the ߙ and ߚ parameters, and inverse gamma distribution with shape and 379 

rate set to 0.01 for the ߪଶ parameters). The resulting posterior distributions will serve as prior 380 
distributions for the main experiment data.  381 

Model comparison. To compare between pairs of models in terms of how well each model fits 382 
participants’ biases, we will compute the evidence in favor of each model as the mean likelihood 383 
of the model given 105 random sets of parameter values drawn from the predefined priors. This 384 
sampling-based estimate of model evidence accounts for model complexity since it integrates 385 
over the entire parameter space.   386 

Quality checks. To ensure that the collected data are able to test the study’s hypothesis, we 387 
will require three criteria. First, to ensure the quality of the pupil diameter data, we will require 388 
that pupillary responses to oddball stimuli be significantly stronger than responses to the other 389 
stimuli in the auditory oddball task. Responses to each stimulus will computed as described 390 
above (see Eye tracking subsection of the method), and then averaged separately for oddball 391 
and non-oddball stimuli for each participant. A one-tailed paired t-test (α = 0.05) across 392 
participants will be used to determine whether responses to oddballs were indeed stronger. If 393 
this is not the case, this will indicate that the pupillary recordings are not sufficiently sensitive 394 
even to capture this typically robust effect, or else that participants were no paying attention to 395 
the oddballs. In either case, new data will need to be collected with a more accurate eye 396 
tracking setup, or clearer instruction and more effective incentivization of participants.  397 

Second, since some of our inferences assume a negative correlation between pupillary responses 398 
and baseline pupil diameter, we will require that such anti-correlation be evident across 399 
participants in the pupil responses to oddball stimuli across the whole experiment. This anti-400 
correlation will be assessed by computing the Pearson correlation across trials between oddball 401 
response and pre-stimulus baseline within each participant. We will then conduct a one-tailed 402 
t-test across participants to determine whether the average correlation was indeed smaller than 403 
0 (α = 0.05). If this is not the case, we will take similar steps as described above for the first 404 
quality check. 405 

Third, in the decision-making tasks, a statistically significant bias needs to be evident in at least 406 
one of the participant tertiles, when averaged across all six experimental tasks. To average 407 
biases across tasks, biases for each task will be scaled such that 1 corresponds to the standard 408 
deviation across participants. Biases will then be averaged for each participant, and a one-tailed 409 
t-test across participants (α = 0.05) will be used to determine whether biases are indeed larger 410 
than zero in each of the participant groups. If biases are not evident in any of the groups, this 411 
will indicate that our participant group might not have been sufficiently engaged in the 412 
experiment, and thus, new data will need to be collected with more effective incentivization of 413 
the participants. 414 
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Pilot Data 415 

We tested 44 participants on the six decision-making tasks described above (without the 416 
oddball task blocks), while measuring their pupil dilation responses. The tercile of participants 417 
with highest pupil responses exhibited significant biases on all 6 tasks, whereas the tercile of 418 
participants with lowest pupil responses exhibited significant biases only on the Anchoring task 419 
(Figure 3). Moreover, we found a significant difference between these two groups in the degree 420 
to which their decisions were biased across all tasks (ppermutation < 0.0005, permutation test; 421 
Figure 4). Specifically, participants with high pupillary responses (consistent with low neural 422 
gain and broader integration) exhibited the strongest and most consistent biases. These results 423 
provide preliminary support for the hypothesis that pupillary responses index general 424 
susceptibility to decision making biases. In particular, these results suggest that broader 425 
integration of information, induced by low neural gain, may play a key role in the formation of 426 
biased decision. 427 

We also separately tested 6 participants on the oddball task. The results confirmed that a 428 
sequence of 50 tones is sufficient to elicit a robust pupillary response to oddball stimuli (t5 > 429 
3.0, p < 0.03, for all 5 blocks), and that a total of 135 tones is sufficient for an anticorrelation 430 
between baseline dimeter and pupillary response to emerge (r < –0.37 for all 6 participants, t5 = 431 
8.6, p < 0.001). In addition, we found no significant habituation of the pupillary response across 432 
blocks (mean linear trend +0.05 ±0.12, t5 = 0.4, p = 0.72).  433 

  434 
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         435 

 436 

           437 

Figure 3. Bias effects in six decision-making tasks as a function of pupil response. For each task, participants were 438 
divided into terciles based on mean pupillary dilation in response to task stimuli. Data from between 1 and 9 439 
participants had to be excluded from each task based on the exclusion criteria described in the Methods. NS: p > 440 
0.1, *: p < 0.01, **: p < 0.005, error bars: across-participant s.e.m. (a) Anchoring. Deviation of participants’ 441 
estimates towards the arbitrary anchors they were asked to consider. Estimates were normalized to the range of 0 442 
to 1. n = 40 participants. (b) Persistence of Belief. Preference of the initially favored urn during the last 60 balls 443 
(which were consistent with the other urn). Preferences were indicated on a scale between -1 and 1. An optimal 444 
observer would be indifferent on average. n = 35 participants. (c) Attribute Framing. Difference in evaluation of 445 
items framed positively versus negatively. Items were rated on a scale of 0 to 1. Positive values indicate higher 446 
evaluations for items framed positively. n = 43 participants. (d) Risky Choice framing. Increase in risk aversion 447 
when outcomes were described in terms of gains as opposed to losses. Preferences were indicated on a scale of -1 448 
to 1. n = 42 participants. (e) “Task Framing”. Preference to both accept and reject the enriched option more than 449 
the impoverished option. Preferences were indicated on a scale of -1 to 1. n = 42 participants. (f) Sample-Size 450 
Neglect, measured as the overweighting of the ratio between heads and tails relative to the weight given to the 451 
optimal inferences (see Methods). n = 37 participants. 452 
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Code availability 455 

The custom scripts used for this study are provided as Supplementary Software and are 456 
available at https://github.com/eeldar/biases. 457 

Data availability 458 

The data that support the findings of this study are available at 459 
https://github.com/eeldar/biases. 460 
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