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[bookmark: _Ref519513288]A1: Concentration Index

Consider a resident population of P individuals and let X= {} be a specific characteristic of the residential population grouped in  categories (e.g. age groups, IRSD quantiles, etc.).  Let P(X)= {} be the probability mass function of X (i.e. ). The increasing order of the observations is denoted:
  
Then the Lorenz Curve is the piecewise linear connection of points:
 ,     
in the unit square. Accordingly, the Lorenz Function is:


It follows that the area under the Lorenz Curve is:

                                                                               
Therefore, the Lorenz Zonoid is

Finally, the CI is given by the following formula:

The Upper Bound of the Concentration Index is    (it is attained when all the observation except one are equal to zero). As a result, the Lorenz Zonoid is divided by  (See Theorem A1.1). It follows that the CI is a function bounded between zero and one.

Theorem A1.1: Let P(X) be a probability density function of the random variable 
X= {}. Then .
Proof: 

                    
 →
              =  = 
It follows that:
     
Q.E.D

Theorem A1.2: Let LF(X) be the Lorenz Function of a random variable X= {}. Then, the area under the Lorenz Curve is 
Proof: 

Reminding the definition of LF(X):



Considering the following identities:



We can compute the Lorenz Curves’ Area:


                                                                                                                                                             

Q.E.D
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To determine the condition for a CI to have Value validity, Kvålseth recently introduced the lambda distribution (λ-distribution) [6]. The term lambda distribution has been chosen for the distribution by Kvålseth because of its L-shape (Greek lambda: λ) from. For nominal categorical variable the λ-distribution is a single parameter distribution where the parameter λ reflects the uniformity or evenness of the distribution and  the number of categories:

Basically, it is a weighted mean of the one-point distribution , sometimes called singleton or degenerate distribution, and the uniform distribution . Note that a concentration measure for nominal variables is a (permutation) symmetric function and therefore any choice of the one-point distribution could be made. However, we shall consider  to be the first element of  and 1 to be the first element of . Then, λ is a rectangularity (uniformity) parameter with increasing λ indicating a decreasing approach of  from the singleton located in the first category to the rectangular (uniform) distribution . Then, a concentration measure has Value validity if it regularly decreases from the one-point distribution to the uniform distribution. This means that adding or subtracting an amount δ to or from λ should cause the same absolute change in the value of CI. This is equivalent to define the CI as a function of a single variable λ, that is . It follows that all the CI values lies on the line segment between  and .
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In the statistical literature, for ordinal types of data, are known lots of indicators to measure the degree of the polarization phenomenon. Typically, many of the widely used measures of distributional variability are defined as a function of a reference point, which in some “sense” could be considered representative for the entire population. This function indicates how much all the values differ from the point that is considered “typical”. Of all measures of variability, the variance is a well-known example that use the mean as a reference point. However, mean-based measures depend to the scale applied to the categories and are highly sensitive to outliers.
Then, is there another way to compare the dispersion of a distribution that does not depend on its location?
To address this challenge, we propose a new measure of polarization, the Divergence Index (DI). The definition of the DI is based on a new representation of probability measures, the Bilateral Cumulative Distribution function (BCDF), which derives from a generalization of the Cumulative Distribution Function (CDF). Basically, it is an extended CDF that can be easily obtained by folding its upper part, commonly known as Survival function or complementary CDF. Unlike the CDF, this functional has a finite constant area independently of the probability distribution and, therefore, more convenient for any distribution comparison. For the definition of the BCDF see (A3.1: Bilateral Cumulative Distribution Function). For the area invariance property see theorem A3.1.2.
Accordingly, the DI is a non-parametric measure that compares the BCDF of two data sets. More specifically, the idea is to compare the distribution shape with that of minimum dispersion, that is the singleton distribution. On this basis, we completely defined the shape of a probability distribution by its BCDF autocorrelation function (BCDFA). The main advantage of this representation is that it is invariant to the location of a distribution and therefore is only sensitive to the distribution shape. For example, any singleton distribution will have the same BCDFA curve. Similarly, distribution with same shape but different means and medians can be represented with a unique curve. In this way, to quantify the distance between a pdf and the singleton distribution, it is only a matter of choosing an appropriate metric, which would assign large values to distribution with more dispersed BCDFA than the singleton. For the definition of the BCDFA see (A3.2: Bilateral Cumulative Distribution Function Autocorrelation). 
The selection of a measure to compare probability distribution is not a trivial matter and usually depends on the objectives. In this work we propose the use of the Jensen Shannon Divergence (JSD) [7]. Since the DI is based on the JSD we dub this new measure of polarization DI-JSD. For the definition see (A3.3: DI-JSD). This measure does not need to be normalized since is a bounded value in the unit interval see theorem A3.3.1.
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Let  be the probability mass function of the discrete random variable 
X =  such that  is a categorical ordinal variable of x (e.g. Age, IRSD score, etc.). It follows that:



Let Y =  be a discrete random variable such that:



Then the Bilateral Cumulative Distribution Function BCDF of X is given by the following formula:



It follows that the recursive definition is:





It is worth noting that: for  →  and  . Basically, the BCDF Complementary CDF.
Considering, therefore, the recursive definition and the integral relation we can compute the BCDF in terms of the convolution operator (see Theorem A3.1.1).


Theorem A3.1.1: Convolution operator

Let  be the BCDF of the discrete random variable X [see A3.1] and P(X) =  the corresponding probability mass function vector. Let  be a n-dimensional unitary vector, then .

Proof: 

Since  is simply the folded sequence  shifted to the right by  units (if k is positive) or to the left (if k is negative), it follows:
















Q.E.D










[bookmark: TheoremA2_2]Theorem A3.1.2: Area invariance property

Let  be the BCDF of the discrete random variable , and  a N-dimensional unitary vector. Then 

Proof: 

Let A denote the area of BCDF:



Then



This can be proved by:












Since the area  (do not change with a shift in τ). It follows that:


Q.E.D
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Let denote  the folding sequence of :



Then the autocorrelation function of  is given by the following formula:



Since the maximum value of the autocorrelation function occurs when the sequence correlates perfectly with itself with zero delay and the symmetry property, we can use the following relations:



It follows that the maximum occurs for 
Let denote  the singleton distribution of the random variable  :



Then the autocorrelation function of  , is given by the following formula:



The BCDFA is a symmetric function that preserves the variance of the pdf. See theorem A3.2.1
For the parametric formula of the minimum and maximum value of the BCDFA see theorem A3.2.2



Theorem A3.2.1: variance BCDFA

Let  be the BCDFA of the random variable     and  a sequence of unit impulses spaced at unit interval. Let’s denote   the variance of the BCDFA, the impulses sequence and the probability distribution respectively. Then:

Proof:



   




It is known that the variance , which is a measure of spread of the probability distribution , is increased under convolution  according to the result: .
It follows that the BCDF of x (i.e. F(Y)) has variance: .
Similarly, the variance of the BCDFA is given by the formula:

It follows that:


Q.E.D
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Let  be the autocorrelation function of the random variable    . Then:



Proof:
Based on theorem A2.2 and the definition of the BCDF (A2):

For sake of simplicity, let’s denote . It follows that:

Substituting the following relations:


It follows that:

The autocorrelation function of the BCDF is therefore a conic. In order to find the maximum and minimum value of the autocorrelation function, it is convenient to reduce the conic in a canonical form:



In order to eliminate the linear terms and operate the translation to the origin, we consider the following conditions:


Since :


These two distributions correspond to the minimum and maximum variance of a bounded probability distribution:


It’s worth noting that in the case N=2  .


Q.E.D
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Let  and  be the autocorrelation functions of the random variable  and the impulse distribution  [see A3].

Based on the area invariance property theorem A3.1.2



It follows that the normalized sequences are:

  and 

For sake of simplicity let denote    and  . Then, based on the Jensen-Shannon Divergence (JSD), we propose the following divergence measure:



Where:
)         








Since  , we assume  = 0.











Theorem A3.3.1: Divergence index bound property
Let DI(X) be the divergence index of the random variable . Then the DI(X) is a bounded metric such that:

{DI(X)} =     

Proof:
Let  and  be the autocorrelation function of the BCDF and its central coordinate (i.e. ). Then we introduce the autocorrelation width as:

That is the area of the autocorrelation function divided by its central ordinate. Based on theorem A3.2.2, it follows that:
{           {
Then:

Since  then:

We therefore define as a measure of compactness for certain shapes of distribution:


The minimum value can be easily computed, considering the autocorrelation of the BCDF 





It follows that:

The Divergence index is therefore a bounded metric. Q.E.D
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To determine the condition for an HI to have Value validity, we shall use the two parameters  distribution, where the parameter  reflects the polarization or dispersion of the distribution for a given value of . Thus, instead of  we shall use:

which reduces to equation  for  and to:

for  For example, the two-point extreme distribution  is the most dispersed ( and the least heterogeneous  configuration. On the other hand, the  is the least dispersed and heterogeneous distribution . Lastly, the uniform distribution  is the only distribution where  and therefore the most heterogeneous . It is assumed of course, that  is strictly decreasing in μ for any given λ. This result is a natural consequence of the simple aversion to median-preserving spreads property.
In this framework, we should expect that a valid HI will be closer to the CI curve for smaller value of the parameter μ and gives reasonably high values for the two-point extreme distribution. This insight leads to the problem of choosing a HI which should vary as little as possible from a selected target function and be not too far away from the CI curve. The task is therefore to find a Value validity condition which incorporates the idea that a well behaved or “smoother” HI is more appropriate than a “rougher” HI. This requirement implies that the HI is bounded above by the values assigned to a target function and below by a minimum curve. These functions set the boundaries of the feasible HI measures and identify a class of slowing decreasing functions or dual Schwartz functions [8] in the  space. This means that small changes in the distribution vector  should not lead to abrupt changes in the value of the index. This behavior does not overstate evenness and give acceptable values when the distributions have large variance. In this way, the upper and lower bound functions identify a feasible region for the HI. Then, the HI has Value validity if it satisfies the following two conditions:

(C1): this condition is based on a loss function  which indicates how far away is the HI from the lower function. More precisely, the value of this function must be positive.
(C2): the value of the loss function  must be less than or equal to the loss function for the target function .
A3.5: CI and True Diversity 

The true diversity  gives the number of equally abundant categories needed to give a particular value of a concentration index.
The conversion of  to any concentration measure, such as the CI, can be easily obtained for a countable number of categories: calculate the CI for s equally abundant categories (s bins with a frequency ) and assign that value to . But how is possible to link the CI to any value of ? 
As discussed in section A3 the CI satisfies the Value validity property and therefore it follows a straight line that basically is an arithmetic progression. In a similar way, the CI value can be mapped to the true diversity number in a linear manner. Consequently, the direct and inverse formula are:


Where:
· 
· 














Appendix B: Location Index

An important task of spatial data analysis consists in identifying a part of data which represents the typical features of the population living in a geographic area. Often the data points are assumed to vary around a centre that identifies a single value as representative of an entire distribution. As a result, we propose a new measure of central tendency, the “Location Index” (LI), that identifies the position of the bin in the distribution where the values are mostly concentrated (i.e. the values in the surrounding areas of the bin are noticeably higher than the others).
The basic idea is to map a nested family of sets around the location of the bin into a single number. If the distribution is univariate the set is a symmetric interval formed by a finite number of categories and the concentration value is given by summing up the likelihood of these regions. In this way, each location has a concentration value and the one with the maximum value corresponds to the point of the LI. For the definition of the LI see (B1: Location Index).
Moreover, the definition of the function used in the computation of the bin concentration value, the Bin Concentration Function (BCF), provides simple rules to determine the location of a distribution. For example, considering a decile distribution, the set of necessary and sufficient conditions to determine the LI value is given in Table 1.
	
Location 
Index
	

	Decile
	
	

	1
	
	

	2
	
	

	3
	
	

	4
	
	

	5
	
	

	6
	
	

	7
	
	

	8
	
	

	9
	
	

	10
	
	


Table 1 Location Index conditions
In this table, the first and remaining columns indicate the LI and the deciles intervals that contain at least  of the data and those with less or equal to  of the samples. For example, the first and last row show that a distribution with a LI equal to one or ten have at least  of the data in the first or last decile. Similarly, the value of this index for the other bins indicates the decile position separating the greater and lesser halves of a distribution.
Therefore, the LI turns out to be an equivalent form of the median, having a breakdown point of : so long as no more than half the data are too much dispersed, the LI will not give an arbitrary large or small result. The basic difference of the LI in describing data compared to the median is that the outcome is always a member of the distribution and it is easier to calculate. In addition, since more than one value can be at the median level, this location parameter identifies a unique interval of values for which the conditions hold. Lastly, the LI definition can be generalized to a multivariate distribution.
Finally, Table 2 summarizes several of the properties of the central tendencies measures that have been discussed in the paper. 
For the properties see Theorem B1.1 and lemma B1.1-5.




















	[bookmark: Central_measure_prop]
	Properties of Measures of Center

	
	Mode
	Median
	Mean
	LI

	Level of measurement
	Nominal or higher
	Ordinal or higher
	Metric usually
	Ordinal or higher

	Simple to understand
	best
	yes
	yes
	Yes

	Easy to calculate
	best
	yes
	yes
	Yes

	Algebraic
	No
	No
	yes
	Yes

	Single valued
	Not Always
	yes
	best
	Not Always

	Resistant to outliers
	yes
	yes
	no
	Yes

	Generalize to
n-variables
	no
	no
	yes
	Yes

	Easy interpretation for n variables
	no
	no
	no
	Yes

	Equal to actual data values
	yes
	Not always
	Not Always
	Yes

	Interpretation
	Most typical value
	Middle value
	Average value
Center of mass
	Set of middle values

	Bad guess interpretation
	Highest % accuracy
	Closest to all scores
	Minimized sum of squared deviations or signed deviation
	Closest to all scores. Highest concentration


Table 2 Central Tendency Measure Properties - Adaption of Central Tendency and variability [9]
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Let   be a closed bounded interval of the random variable  Then  . It follows that . In the case of a symmetric closed bounded interval 



Let’s denote the set of nested compact subset of  with the following notation:



Then, let’s define the functions  (Likelihood Central Region function) and  (Level Set Density function).





Then the Bin Concentration function (BCF), is given by the following formula:


Let be the BCF vector of the random varaible X.



Then, the Location Index of this random variable is given by the formula:

   









Theorem B1.1- Location index convergence property: Let  be a sequence in , such that:

Then .

Proof:

Let  and  be two collections of non empty closed bounded intervals in ℤ such that 


Since  and , it follows that:



Then


It follows that 



Therefore,





Q.E.D







[bookmark: LemmaA61]Lemma B1.1 Let  be the Likelihood Central Region Function and  be the BCF of the random variable . Then the BCF is a linear convex combination such that:





Proof:
Let , then the Likelihood Central Region Function is given by the following formula:



Since  it follows that:



Then the Level Set Density Function is given by the following equation:







Then for 



It follows that:

Q.E.D 

Let’s prove for :


Since , it follows that:



Then the Level Density Function is given by the following equation:







Then for  



It follows that:


Q.E.D


Let 

The Likelihood Central Region Function is given by the following formula:


Since . It follows from the previous results that:



Then the Level Set Density Function is given by the following equation:


Let’s solve the first term:







Then for  



Since 



It follows that:



The second term:







Then for  



Since 



It follows that:


Q.E.D

Corollary B1.1: Let  be the expected value of the uniform distribution and  be the rounded floor value. Then: 



Proof:



For  


For 


For 




For  



For 


For 



Q.E.D

[bookmark: LemmaA62]Lemma B1.2: Let   be the BCF vector of the random variable X 
and . Then



Proof:

According to the Corollary B1.1 :


Let’s prove


It follows that:




So 

For sake of simplicity let’s denote , then:





It follows:





It follows that  

Assume 

Then 



It follows that:



Therefore, for 


Similarly, for 



Q.E.D



Lemma B1.3 Let  be the LI of the random variable  and  its probability mass function. Then:



Proof:

Since the BCF is a linear convex combination:


It follows that the maximum value is attained when the coefficients  of the polynomial are all set to zero execpt for  In other words:



On the other hand, the minimum value is attained when all the bins have exactly the same concentration value. This situation occurs when .







Substituiting .







Q.E.D


[bookmark: LemmaA6_4]Lemma B1.4: Let  be the LI of the random variable  and  be the Bin concentration value. Then the normalized value is given by the following formula:



Proof:
According to Lemma B1.3:


It follows that:


It follows that 



As for the Bin compactness deviation:

Q.E.D

[bookmark: Lemma_A6_5]Lemma B1.5: Let  be the BCF of the random variable  and  be the average absolute deviation. Then:


Proof:

For sake of simplicity let’s dentoe:



It follows that:








Let   




Let  and  be the mass probability of the random variable . Then, since , it follows that:

             

Let 



It follows that:



Let 


















It follows that:


Where:



Q.E.D
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