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Graph traversal algorithms for GPU
Algorithm 1 describes the parallel BFS algorithm implemented in cuRnet [1]. It

explores the reachable vertices, level-by-level, starting from a source vertex s.

Algorithm 1 Parallel breath-first search algorithm
1: for all vertices u ∈ V (G) do
2: d(u) =∞
3: d(s) = 0, F1 = s, F2 = ∅
4: level = 1
5: while F1 6= ∅ do
6: parallel for vertices u ∈ F1 do
7: u← dequeue(F1)
8: parallel for vertices v ∈ adj [u] do
9: if d(u) =∞ then
10: d(u) = level
11: enqueue(F2, u)

12: end
13: end
14: level = level + 1
15: swap(F1, F2)
16: F2 = ∅
17: end

We selected the BFS for GPUs proposed in [1] (BFS-4K ) since it is actually

the main efficient BFS implementation at the state of the art. Figure 1 shows the

results of a comparison we performed between BFS-4K, Gunrock [2], and B40C

[3]. The network dataset has been composed by selecting different graphs from the

University of Florida Sparse Matrix Collection [4], the 10th DIMACS Challenge [5],

and the SNAP dataset [6]. It is important to note that this work targets many-core

architectures (GPUs) as, for graph traversing, they allow reaching higher speedup

w.r.t. multi-core architectures at low cost [1],[2],[3]. Indeed, cuRnet can be used in

any HW/SW architecture with a standard and cheap graphics processing unit (e.g.,

NVIDIA GPU). Our future work consists of extending the acceleration concept to

other more complex, high-end architectures (e.g., multi-node GPUs or multi-node

many-cores like that adopted in [7]). The parallel SSSP algorithm implemented

in cuRnet is based on the Bellman-Ford’s approach [8]. It can be derived from

Algorithm 1 by replacing lines 8-12 with the following lines:

parallel for vertices v ∈ adj [u] do

if d(u) + w < d(v) then // relax procedure

d(v) = d(u) + w

enqueue(F2, v)
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end

end

Finally, the parallel SCC algorithm implemented in cuRnet is described in Algo-

rithm 2. It implements a multi-step approach that applies different GPU-accelerated

algorithms for SCC decomposition[9].

Data
We used the STRING dataset [10], which mainly contains Protein-Protein Inter-

action (PPI) networks of several organisms, varying from microbes to eukaryotes.

We used the R package STRINGdb. We retrieved the undirected networks related

to Homo sapiens, Danio rerio, and Zea mais (Figures 2, 3 and 4 show their prop-

erties). These three organisms belong to the set of core species of STRING. This

guarantees a good reliability of them. The human PPI is the smallest one, with 19k

vetices and 11M edges, and the Maize’s network is the largest one, with 33k vertices

and 34M edges. The networks show differences in the degree distribution, as well as

in the distribution of the STRING score assigned to their edges. STRING assigns to

each interaction a functional score, combining multiple information, ranging from

0 to 1000. Thus, in addition to the complete PPIs, supplementary networks were

extracted by applying thresholds to edge scores. A threshold on the value 900 has

been fixed to discard edges with lower score producing a sparse network of highly

functional connections [10]. An intermediate threshold on the value 200 has been

fixed to remove low significant predicted interactions.

The STRING package provides a real-case example reporting differential expres-

sion values regarding the treatment of A549 lung cancer cells by means of Resver-

atrol, a natural phytoestrogen found in red wine and a variety of plants shown to

have protective effects against the disease. The example is referred to the GEO

(Gene Expression Omnibus) GSE9008 study. We used such data to label the above

described PPI networks according to the pvalues (see Figure 5).

Figure 6 reports the properties of a dataset of direct unlabelled homology networks

built on the complete set of 115 archaea species from STRINGdb. The homology

information between proteins is measured by sequence BLAST alignments. For each

protein, STRING reports the best BLAST hits, w.r.t. a given species. The number

of edges (best hists) increases with the number of vertices (proteins), and about

75% of edges represents bidirectional hits. The final network, composed by the

proteins of all the 114 species, has 229k vertices and more than 9M edges. Degree

distributions show a prevalence for low values, that indicates the presence of strain-

specific genes. The outgoing degree distribution is bounded by the amount of 114

species, but much higher connectivity is shown for incoming degrees.

Performance
Figures 7 and 8 report the running time to create the graph data structures from the

R data. They show that cuRnet requires half the time w.r.t. iGraph to accomplish

such a task. Figures 9 and 10 show running times regarding the computation of

BFS and SSSP on the Danio rerio PPI. Figures 11, 12, 13, 14, and 15 compare the

running time to compute BFS, SSSP and SCC including the time to build the graph

data structures. cuRnet outperforms iGraph confirming the speedups reported in
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Algorithm 2 Parametric Multi-Step SCC Decomposition algorithm
1: F1 ← V (G), F2 ← ∅, P1 ← ∅, P2 ← ∅
2: parallel for vertices u ∈ V (G) do
3: color(u)← undefined
4: end
5:
6: t← 1
7: trimmable← true
8: while F1 6= ∅ ∧ t ≤MAX TRIM ∧ trimmable do
9: trimmable← false

10: parallel for vertices u ∈ F1 do
11: if Trim(F1, u) = false then
12: Insert(F2, u)
13: else
14: color(u)← u
15: trimmable← true
16: end
17: end
18: F1 ← F1 \ F2

19: t← t+ 1
20: end
21:
22: Insert(P1, F1)
23: fb← 1
24: while P1 6= ∅ ∧ fb ≤MAX FB do
25: parallel for set S ∈ P1 do
26: p← PivotSelection(S)
27: F ← Fwd-Reach(S, p)
28: B ← Bwd-Reach(S, p)
29: parallel for vertices u ∈ F ∩B do
30: color(u)← p
31: end
32: F1 ← F1 \ (F ∩B)
33: InsertIfNotEmpty(P2, S \ (F ∪B)
34: InsertIfNotEmpty(P2, F \B)
35: InsertIfNotEmpty(P2, B \ F )
36: end
37: swap(P1,P2)
38: P2 ← ∅
39: fb← fb+ 1
40: end
41:
42: while F1 6= ∅ do
43: parallel for vertices u ∈ F1 do
44: color(u)← u
45: end
46: while fix-point is not reached do
47: parallel for vertices u ∈ F1 do
48: Fwd-MaxColor(u, color)
49: end
50: end
51: P,S ← PivotWithSet(colors)
52: F2 ← ∅
53: parallel for (pi, Si ∈ P,S) do
54: B ← Bwd-Reach(Si, pi)
55: parallel for vertices u ∈ B do
56: color(u)← pi
57: Append(F2, u)
58: end
59: end
60: F1 ← F1 \ F2

61: end
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Figure 1 Performance comparison of BFS GPU implementations. Comparison between the BFS
implementation adopted in this work[1] and the other most widespread BFS applications for GPUs
at the state of the art.

Figures 2, 3 and 4 of the main paper. Figures 16, 17 and 18 report the performance

of cuRnet measured by running the software on two different GPU architectures.

Regarding BFS (Figure 16), the device with the Maxwell architecture outperforms

the Tesla device, however also the less recent device shows good speed-ups, up

to 10x, w.r.t. iGraph. Test concerning the SCC search show similar results, with

some exception in which the Tesla architecture outperforms the Maxwell one due

to the very small workloads (small homology networks), as shown in Figure 18.

Tests over PPI networks (see Figure 17), regarding the calculation of distance in

shortest paths, show that the architectural difference between the two devices may

results in different slopes of the running times that produce differences in speed-

up curves. Finally, Figure 19 reports the PCSF subnetworks obtained by running

PCSF accelerated with the cuRnet SSSP function to analyze diffuse large B-cell

lymphoma (DLBCL). Based on gene expression profiling studies DLBCL can be

divided into two subgroups, the germinal center B-cell (GCB) and the activated B-

cell like (ABC), with different clinical outcome and response to therapies [11, 12].

In particular, Figure 19 shows subnetworks for GCB patients. It highlights the

activation of the PI3K/Akt/mTOR signalling pathway (cluster in red) and over-

expression of germinal center markers such as BCL6, LMO2, MME (CD10) and

MYBL1m, confirming the findings reported in [13, 14].
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Figure 2 Properties of benchmark Homo sapiens PPI obtained from STRING. Number of
vertices, number of edges, vertices degree distribution and edges weights distribution for the three
PPI networks downloaded via the R package of STRINGdb.
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Figure 3 Properties of benchmark Danio rerio PPI obtained from STRING. Number of
vertices, number of edges, vertices degree distribution and edges weights distribution for the three
PPI networks downloaded via the R package of STRINGdb.
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Figure 4 Properties of benchmark Zea mais PPI obtained from STRING. Number of vertices,
number of edges, vertices degree distribution and edges weights distribution for the three PPI
networks downloaded via the R package of STRINGdb.
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Figure 5 Distribution of p-values, over the complete Homo sapiens PPI. Values were obtained
from the STRINGdb R package example regarding treatments of lung cancer. Among the 17, 740
annotated genes, 1, 063 of them show a p-value below 0.05.
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Figure 6 Properties of benchmark regarding homology networks retrieved from STRING. The
networks were built by incrementally taking into account the 115 archaea species reported in
STRING. Network edges connect most similar proteins among species. The top-left chart shows
the number of directed edges (overlying blue line) and bidirectional edges (underlying orange line)
arranged by number of vertices of the incremental networks. The ratio between the two type of
edges ranges between 74 and 76 percent. The final complete network has 229, 363 vertices and
9, 725, 349 edges. In, out, and undirected degree distribution of the complete network are show in
the remaining three charts. The maximum out degree is 114, while undirected degree and in
degree reach values of about 3, 500. Distributions shows intermediate peaks at 132 and 226 for
undirected degree, 66 and 113 for out and in degree. The complete network has 3, 643, 915
bidirectional edges. The degree distribution of bidirectional edges (not shown) follows a trend
similar tot he out degree distribution. Average degrees are 84, 43, 42 and 33 for undirected, in,
out and bidirectional edges, respectively.

Figure 7 Timing for building graph data structures in PPI dataset.
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Figure 8 Timing for building graph data structures in homology networks.
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Figure 9 cuRnet performance vs iGraph on computing breath first search on the Danio rerio
PPI. Three different score thresholds, 0, 200 and 900, were applied, and different amounts of
source vertices were selected.
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Figure 10 cuRnet performance vs iGraph on computing shortest paths distances on the Danio
rerio PPI. Three different score thresholds, 0, 200 and 900, were applied, and different amounts
of source vertices were selected. The underlying charts show running times of cuRnet and iGraph
in calculating distance of shortest paths within the PPI of the selected species for every
combination of score threshold and amount of selected sources.
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Figure 11 cuRnet performance vs iGraph on computing Breath First Search on the Homo
sapiens and Zea mais PPIs. Timing includes the graph data structure computation. Algorithms
are run on unlabelled PPI datasets.
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Figure 12 cuRnet performance vs iGraph on computing Breath First Search on the Danio
rerio PPI. Timing includes the graph data structure computation. Algorithms are run on
unlabelled PPI datasets.
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Figure 13 cuRnet performance vs iGraph on computing shortest paths distances on the Homo
sapiens and Zea mais PPIs. Timing includes the graph data structure computation. Algorithms
are run on labeled PPI datasets.
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Figure 14 cuRnet performance vs iGraph on computing shortest paths distanceson the Danio
rerio PPI. Timing includes the graph data structure computation. Algorithms are run on labeled
PPI datasets.
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Figure 15 cuRnet performance vs iGraph on computing strongly connected components. .
Timing includes the graph data structure computation. Algorithms are run on homology directed
unlabelled networks.
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Figure 16 cuRnet performances on computing Breath First Search by running the software on
two differnt NVIDIA GPU devices, the Maxwell GeForce GTX 980 and the Tesla K40.. Timing
includes the graph data structure computation. Algorithms are run on unlabelled PPI datasets.
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Figure 17 cuRnet performances on computing shortest paths distances by running the software
on two differnt NVIDIA GPU devices, the Maxwell GeForce GTX 980 and the Tesla K40.. The
underlying charts show running times of the executions of cuRnet on the two devices, and their
speed-ups w.r.t. iGraph, in calculating distance of shortest paths within the PPI of the Homo
sapiens species for every combination of score threshold and amount of selected sources.
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Figure 18 cuRnet performances on computing Breath First Search by running the software on
two differnt NVIDIA GPU devices, the Maxwell GeForce GTX 980 and the Tesla K40..
Running times, and corresponding speed-ups, of cuRnet on the two devices, and their speed-ups
w.r.t. iGraph, on increasing the size of the extracted homology network, up to the final one of 114
species.
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Figure 19 PCSF accelerate with cuRnet SSSP function on GCB patients.


