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1 Supplementary material

The asymmetric amplitude profile of Gammatones makes them suitable to
model temporal masking in auditory filterbanks [9]. Yet, the introductory pa-
per on Gammatone wavelets [8] does not provide a formula for deducing σ
from the specification of a quality factor Q. In this appendix, we provide a
rationale for choosing the topmost center frequency ξ of a Gammatone wavelet
filter bank in a discrete-time setting. Then, we relate the bandwidth parameter
σ to the choice of a quality factor Q.

Motivation

Time reversal of a real signal x(t) is equivalent to the complex conjugation of
its Fourier transform x̂(ω). As a consequence, the Fourier transform modulus
|x̂(ω)| is not only invariant to translation, but also invariant to time reversal.
Yet, although invariance to translation is needed for classification, invariance
to time reversal is an undesirable property. A simple way to break invariance
to time reversal is to choose ψ(t) as an asymmetric wavelet instead of a Gabor
symmetric wavelet.

The complex-valued Gammatone wavelet is a modification of the real-
valued Gammatone auditory filter, originated in auditory physiology. The
Gammatone auditory filter of dimensionless frequency 1 is defined as a gamma
distribution of order N ∈ N

∗ and bandwidth σ modulated by a sine wave, that
is,

tN−1 exp(−2πσt) cos(2πt).

For a fixed σ, the integer N controls the relative shape of the envelope, be-
coming less skewed as N increases. Psychoacoustical experiments have shown
that, for N = 4, the Gammatone function provides a valid approximation of
the basilar membrane response in the mammalian cochlea [3,6,5]. In particu-
lar, it is asymmetric both in the time domain and in the Fourier domain, which
allows to reproduce the asymmetry of temporal masking as well as the asym-
metry of spectral masking [9]. It is thus used in computational models for au-
ditory physiology [7]. However, it does not comply with the Grossman-Morlet
admissibility condition, because it has a non-negligible average. In addition,
because the Gammatone auditory filter takes real values in the time domain,
its Fourier transform satisfies Hermitian symmetry, which implies that it does
not belong to the space H2 of analytic functions. More generally, there are no
real-valued functions in H2 [4].

Related work

With the aim of building a pseudo-analytic admissible Gammatone wavelet,
[8] have modified the definition of the Gammatone auditory filter, by replacing
the real-valued sine wave cos(2πt) by its analytic part exp(2πit) and by taking
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the first derivative of the gamma distribution, thus ensuring null mean. The
definition of the Gammatone wavelet becomes

ψ(t) =
(
2π(i− σ)tN−1 + (N − 1)tN−2

)
exp(−2πσt) exp(2πit)

in the time domain, and

ψ̂(ω) =
iω × (N − 1)!

(σ + i(ω − σ))N

in the Fourier domain. Besides its biological plausibility, the Gammatone
wavelet enjoys a near-optimal time-frequency localization with respect to the
Heisenberg uncertainty principle. Furthermore, this time-frequency localiza-
tion tends to optimality as N approaches infinity, because the limit N → +∞
yields a Gabor wavelet [2]. Last but not least, the Gammatone wavelet trans-
form of finite order N is causal, as opposed to the Morlet wavelet transform,
which makes it better suited to real-time applications. From an evolutionary
point of view, it has been argued that the Gammatone reaches a practical
compromise between time-frequency localization and causality constraints [8].

Center frequency parameter

In order to preserve energy and allow for perfect reconstruction, the Gamma-
tone wavelet filter bank must satisfy the inequalities

1− ε ≤ |φ̂(ω)|+
∑

γ

|ψ̂(2γω)|+ |ψ̂(−2γω)| ≤ 1

for all frequencies ω, where ε is a small margin [1]. Satisfying the equation
above near the Nyquist frequency ω = π can be achieved by placing the log-
frequency log

2
ξ of the first (topmost) wavelet in between the log-frequency

log
2
(ξ × 2−1/Q) of the second wavelet and the log-frequency log

2
(2π − ξ) of

the mirror of the first wavelet. We obtain the equation

log
2
ξ − log

2
(ξ × 2−1/Q) = log

2
(2π − ξ)− log

2
ξ,

of which we deduce the identity

ξ =
2π

1 + 21/Q
.

For Q = 1, this yields a center frequency of ξ = 2π
3
. For greater values of Q,

the center frequency ξ tends towards π.
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Bandwidth parameter

The quality factor Q of the Gammatone wavelet is defined as the ratio between
the center frequency ξ of the wavelet ψ̂(ω) and its bandwidth B in the Fourier
domain. This bandwidth is given by the difference between the two solutions
ω of the following equation:

|ψ̂(ω)|

|ψ̂(ξ)|
=

ω

ξ
×

(
1 +

(ω − ξ)
2

σ2

)
−N/2

= r,

where the magnitude cutoff r is most often set to
√

1

2
. Let ∆ω = ω−ξ. Raising

the above equation to the power N/2 yields the following:

(
1 +

∆ω

ωc

)N/2

= r ×

(
1 +

∆ω2

α2

)
.

Since∆ω � ξ, we may approximate the left-hand side with a first-order Taylor
expansion. This leads to a quadratic equation of the variable ∆ω:

r2/N

σ2
×∆ω2 −

2

Nξ
×∆ω +

(
r2/N − 1

)
= 0.

The discriminant of the above equation is:

D = 4×

(
1

N2ξ2
+

r2/N
(
1− r2/N

)

σ2

)
,

which is a positive number as long as r < 1. The bandwidth B of ψ̂ is given
by the difference between the two solutions of the quadratic equation, that is:

B =
2σ2

r2/N
×

√
1

N2ξ2
+

r2/N
(
1− r2/N

)

σ2
.

Now, let us express the parameter α as a function of some required bandwidth
B at some cutoff threshold r. After having raised the above to its square and
rearranged the terms, we obtain another quadratic equation, yet of the variable
α2:

4

r4/NN2ξ2
σ4 +

4×
(
1− r2/N

)

r2/N
σ2 −B2 = 0

We multiply the equation by
r2/N

4×
(
1− r2/N

) 6= 0 :

1

r2/N
(
1− r2/N

)
N2ξ2

σ4 + σ2 −
r2/NB2

4×
(
1− r2/N

) = 0
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This leads to defining σ2 as the unique positive root of the above polynomial:

σ2 =
r2/N

(
1− r2/N

)
N2ξ2

2
×

(√
1 +

B2

(
1− r2/N

)2
N2ξ2

− 1

)
.

If the filter bank has to be approximately orthogonal, we typically set B to
B =

(
1− 2−1/Q

)
× ξ.

We conclude with the following closed form for α:

α = KN ×

√√√√
√
1 + hN (Q)

2
− 1

2
× ξ,

where

KN = r1/NN
√
1− r2/N and hN (Q) =

1− 2−1/Q

N ×
(
1− r2/N

) .
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