Supplementary Material for the paper "A Bayesian Robust Kalman Smoothing Framework for State-Space Models with Uncertain Noise Statistics"

Roozbeh Dehghannasiri, Xiaoning Qian, Edward R. Dougherty
Department of Electrical and Computer Engineering, Texas A $\mathcal{G M}$ University, College Station, TX 77843 USA

In this supplement, we provide more details on the likelihood function $f\left(\mathcal{Y}_{L} \mid \boldsymbol{\theta}\right)$ needed for obtaining the posterior effective noise statistics based on the Metropolis Hastings technique.

Algorithm 1 summarizes the procedure for computing the likelihood function of the parameter $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}\right]$ given a sequence of observations $\mathcal{Y}_{L}=\left\{\mathbf{y}_{0}, \ldots \mathbf{y}_{L}\right\}$ up to time L. The inputs to this algorithm are the sequence of observations \mathcal{Y}_{L}, the initial conditions $\mathrm{E}\left[\mathbf{x}_{0}\right]$ and $\operatorname{cov}\left[\mathbf{x}_{0}\right]$, and matrices $\boldsymbol{\Phi}_{k}, \boldsymbol{\Gamma}_{k}, \mathbf{H}_{k}, \mathbf{Q}^{\theta_{1}}$, and $\mathbf{R}^{\theta_{2}}$ characterizing the parameterized state-space model in (1) and (2).

In order to compute the likelihood function in Line 17, which is based on equation (39) in the paper, we first need to obtain S_{L} and matrices $\boldsymbol{\Sigma}_{L}$ and \mathbf{M}_{L} using recursive calculations outlined in lines 8 to 14. After the recursive calculations, $\boldsymbol{\Delta}_{L}$ and \mathbf{G}_{L} can be computed using $\boldsymbol{\Sigma}_{L}$ and \mathbf{M}_{L}.

In each iteration of the recursive calculations, first $\boldsymbol{\Sigma}_{k+1}$ is obtained using $\boldsymbol{\Lambda}_{k}$. Then $\boldsymbol{\Sigma}_{k+1}$ along with $\boldsymbol{\Lambda}_{k}, \boldsymbol{\Sigma}_{k}$, and \mathbf{M}_{k} is used to calculate \mathbf{M}_{k+1}. In the next step, $\boldsymbol{\Sigma}_{k+1}$ and \mathbf{M}_{k+1} can be used to update the value of S_{k} to S_{k+1}. Also, $\boldsymbol{\Lambda}_{k+1}$ is found using $\boldsymbol{\Sigma}_{k+1}$. Finally, \mathbf{W}_{k+1} can be obtained via $\boldsymbol{\Sigma}_{k+1}$ and \mathbf{M}_{k+1}.

```
Algorithm 1 Likelihood Function Computation
    1: input: \(\mathcal{Y}_{L}=\left\{\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{L}\right\}, \mathrm{E}\left[\mathbf{x}_{0}\right], \operatorname{cov}\left[\mathbf{x}_{0}\right], \boldsymbol{\Phi}_{k}, \boldsymbol{\Gamma}_{k}, \mathbf{H}_{k}, \mathbf{Q}^{\theta_{1}}, \mathbf{R}^{\theta_{2}}\)
    output: \(f\left(\mathcal{Y}_{L} \mid \theta\right)\)
    \(S_{0} \leftarrow 1 \quad \triangleright\) the initialization step for \(S_{k}\)
    \(\boldsymbol{\Sigma}_{0} \leftarrow \operatorname{cov}\left[\mathbf{x}_{0}\right] \quad \triangleright\) the initialization step for \(\boldsymbol{\Sigma}_{k}\)
    \(\mathbf{M}_{0} \leftarrow \mathrm{E}\left[\mathbf{x}_{0}\right] \quad \triangleright\) the initialization step for \(\mathbf{M}_{k}\)
    \(\widetilde{\mathbf{Q}}_{0}^{\theta_{1}} \leftarrow \boldsymbol{\Gamma}_{0} \mathbf{Q}^{\theta_{1}} \boldsymbol{\Gamma}_{0}^{T}\)
    \(\boldsymbol{\Lambda}_{0}^{-1} \leftarrow \boldsymbol{\Phi}_{0}^{T}\left(\widetilde{\mathbf{Q}}_{0}^{\theta_{1}}\right)^{-1} \boldsymbol{\Phi}_{0}+\mathbf{H}_{0}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{H}_{0}+\boldsymbol{\Sigma}_{0}^{-1} \quad \triangleright\) the initialization step for \(\boldsymbol{\Lambda}_{k}\)
    for \(k=0: L-1\) do
        \(\widetilde{\mathbf{Q}}_{k}^{\theta_{1}} \leftarrow \boldsymbol{\Gamma}_{k} \mathbf{Q}^{\theta_{1}} \boldsymbol{\Gamma}_{k}^{T}\)
        \(\boldsymbol{\Sigma}_{k+1}^{-1} \leftarrow\left(\widetilde{\mathbf{Q}}_{k}^{\theta_{1}}\right)^{-1}-\left(\widetilde{\mathbf{Q}}_{k}^{\theta_{1}}\right)^{-1} \boldsymbol{\Phi}_{k} \boldsymbol{\Lambda}_{k} \boldsymbol{\Phi}_{k}^{T}\left(\widetilde{\boldsymbol{Q}}_{k}^{\theta_{1}}\right)^{-1} \quad \triangleright\) equation 42]
        \(\mathbf{M}_{k+1} \leftarrow \boldsymbol{\Sigma}_{k+1}\left(\widetilde{\mathbf{Q}}_{k}^{\theta_{1}}\right)^{-1} \boldsymbol{\Phi}_{k} \boldsymbol{\Lambda}_{k}\left(\mathbf{H}_{k}^{T}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{y}_{k}+\boldsymbol{\Sigma}_{k}^{-1} \mathbf{M}_{k}\right) \quad \triangleright\) equation (43)
        \(S_{k+1} \leftarrow S_{k} \sqrt{\frac{\left|\boldsymbol{\Lambda}_{k}\right|\left|\boldsymbol{\Sigma}_{k+1}\right|}{\left|\tilde{\mathbf{Q}}_{k}^{\theta_{1}}\right|\left|\boldsymbol{\Sigma}_{k}\right|}} \mathcal{N}\left(\mathbf{y}_{k} ; \mathbf{0}_{m \times 1}, \mathbf{R}^{\theta_{2}}\right) \exp \left(\frac{\mathbf{M}_{k+1}^{T} \boldsymbol{\Sigma}_{k+1}^{-1} \mathbf{M}_{k+1}+\mathbf{W}_{k}^{T} \boldsymbol{\Lambda}_{k} \mathbf{W}_{k}-\mathbf{M}_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{M}_{k}}{2}\right)\)
    \(\triangleright\) equation (44)
13: \(\quad \boldsymbol{\Lambda}_{k+1}^{-1} \leftarrow \boldsymbol{\Phi}_{k+1}^{T}\left(\widetilde{\mathbf{Q}}_{k+1}^{\theta_{1}}\right)^{-1} \boldsymbol{\Phi}_{k+1}+\mathbf{H}_{k+1}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{H}_{k+1}+\boldsymbol{\Sigma}_{k+1}^{-1} \quad \triangleright\) equation (45)
14: \(\quad \mathbf{W}_{k+1} \leftarrow \mathbf{H}_{k+1}^{T}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{y}_{k+1}+\boldsymbol{\Sigma}_{k+1}^{-1} \mathbf{M}_{k+1} \quad \triangleright\) equation (46)
15: \(\boldsymbol{\Delta}_{L}^{-1} \leftarrow \mathbf{H}_{L}^{T}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{H}_{L}+\boldsymbol{\Sigma}_{L}^{-1} \quad \triangleright\) equation (40)
16: \(\mathbf{G}_{L} \leftarrow \boldsymbol{\Delta}_{L}\left(\mathbf{H}_{L}^{T}\left(\mathbf{R}^{\theta_{2}}\right)^{-1} \mathbf{y}_{L}+\boldsymbol{\Sigma}_{L}^{-1} \mathbf{M}_{L}\right) \quad \triangleright\) equation 41]
17: \(f\left(\mathcal{Y}_{L} \mid \boldsymbol{\theta}\right) \leftarrow S_{L} \sqrt{\frac{\left|\boldsymbol{\Delta}_{L}\right|}{\left|\boldsymbol{\Sigma}_{L}\right|}} \mathcal{N}\left(\mathbf{y}_{L} ; \mathbf{0}_{m \times 1}, \mathbf{R}^{\theta_{2}}\right) \exp \left(\frac{1}{2}\left(\mathbf{G}_{L}^{T} \boldsymbol{\Delta}_{L}^{-1} \mathbf{G}_{L}-\mathbf{M}_{L}^{T} \boldsymbol{\Sigma}_{L}^{-1} \mathbf{M}_{L}\right)\right) \quad \triangleright\)
    equation (39)
18: return \(f\left(\mathcal{Y}_{L} \mid \boldsymbol{\theta}\right)\)
```

